Glänzendes Wachstum ohne Gold
Max-Planck-Forscher aus Halle präsentieren neue Methode um Nanodrähte aus Silizium herzustellen
Silizium-Nanodrähte können helfen, Mikrochips weiter zu verkleinern. Wissenschaftler des Max-Planck-Instituts für Mikrostrukturphysik in Halle haben nun erstmals einkristalline Silizium-Nanodrähte gezüchtet, die wichtige Voraussetzungen dafür erfüllen: Sie haben Aluminium als Katalysator verwendet, um die Nanodrähte wachsen zu lassen. Bislang setzten Wissenschaftler zu diesem Zweck vor allem Gold ein. Doch schon Spuren des Edelmetalls beeinträchtigen die Funktion von Halbleiterbauteilen drastisch. Andere Metalle tun das zwar nicht. Sie katalysieren den Prozess aber nur bei Temperaturen, die ihn unwirtschaftlich machen würden. Aluminium dagegen wirkt schon bei relativ niedrigen Temperaturen als Katalysator und verringert die Qualität elektronischer Bauteile nicht. "Das neue Verfahren erfüllt die wichtigsten Bedingungen, um Silizium-Nanodrähte industriell einsetzen zu können", sagt Dr. Stephan Senz, einer der beteiligten Wissenschaftler.
Um Aluminium in so kleine Partikel zu zerlegen, dass sich an ihm die feinen Drähte bilden, erhitzen die Forscher eine dünne Schicht davon auf einer Silizium-Unterlage. Die Folie zerreißt dann in lauter winzige Teilchen. Anschließend gehen die Wissenschaftler wie in schon bekannten Verfahren vor: Sie dampfen Silan, ein siliziumhaltiges Gas, auf die Oberfläche, das sich am Katalysatorpartikel in elementares Silizium umwandelt. Das Silizium löst sich daraufhin in dem Aluminium-Teilchen. Wenn dieses kein weiteres Silizium aufnehmen kann, kristallisiert es an der Unterseite des Partikels wieder aus. So wächst ein einkristalliner Silizium-Nanodraht von etwa 40 Nanometern Durchmesser heran, der an der Spitze ein Katalysatorteilchen trägt.
Die viel versprechende Forschung an Halbleiter-Nanodrähten bewegt sich an der Schnittstelle von Grundlagenforschung und technischer Anwendung. "Neben ihrem denkbaren Einsatz in der Halbleiterindustrie sind die Nanodrähte sehr interessant für die physikalische Grundlagenforschung, da über ihre Eigenschaften und ihr Wachstum noch nicht viel bekannt ist", erläutert Senz, "bei noch etwas kleineren Dimensionen würden sogar Quanteneffekte auftreten."
Originalveröffentlichung: Y. Wang, V. Schmidt, S. Senz, U. Gösele; "Epitaxial Growth of Silicon Nanowires using an Aluminium Catalyst"; Nature Nanotechnology 2006.
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren

Elektrochemische Messzellen und Elektroden von C3 Prozess- und Analysentechnik
Ersetzen Sie viele Messzellen mit unserer vielseitigen Voltammetriezelle für präzise Messergebnisse

Rotating Ring Disk Elektrode Rotator von C3 Prozess- und Analysentechnik
Präzise Rotation und einfacher Elektrodenwechsel - Entdecken Sie das innovative Rotator-System!

Interface 1010 von C3 Prozess- und Analysentechnik
Optimieren Sie Ihre elektrochemische Messungen für präzise Ergebnisse und vielfältige Anwendungsmöglichkeiten

Reference 620 von C3 Prozess- und Analysentechnik
Potentiostat / Galvanostat / ZRA mit maximaler Empfindlichkeit und minimalem Rauschen für wegweisende Forschung

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.