Magnetische Fingerabdrücke im Fotostrom

24.07.2007

Wissenschaftlern des Hahn-Meitner-Instituts Berlin (HMI) sowie der Freien Universität (FU) Berlin ist ein außergewöhnlicher Einblick ins Innere von organischen Materialien gelungen. Die Physiker konnten im Fotostrom erstmals eine Quantensignatur magnetisch aktiver Zentren in einer molekularen Schicht beobachten. Daraus ergeben sich neue Möglichkeiten sowohl für das Ein- und Auslesen von Quanteninformationen in molekularen Spinquantencomputern als auch für ein verbessertes Verständnis von organischer Photovoltaik.

Organische Materialien sind preiswert herzustellen und daher für viele Anwendungen im Gespräch, für die bislang teurere anorganische Halbleitermaterialien wie Silizium oder Galliumarsenid eingesetzt werden. Das größte Problem für den breiten kommerziellen Einsatz organischer Materialien ist die notwendige Verbesserung ihrer Leitfähigkeit und Stabilität. Diese Eigenschaften hängen von komplexen Vorgängen im Inneren der Materialien ab, unter anderem von den Spin-Zuständen der Ladungsträger (Elektronen).

Die Gruppen um Wolfgang Harneit (FU, Quantencomputer), Konstantinos Fostiropoulos (HMI-Wannsee, Organische Solarzellen) und Klaus Lips (HMI-Adlershof, Siliziumphotovoltaik) sowie Lips' früherem Kollegen Christoph Böhme, der mittlerweile eine Gruppe an der University of Utah, USA leitet, haben nun erstmals kohärente (im Gleichtakt schwingende) Spin-Zustände in organischen Substanzen bei Raumtemperatur elektrisch nachgewiesen. Traditionell werden Spin-Zustände durch Absorption von Mikrowellenstrahlung gemessen. Das Verfahren beruht dabei auf der Elektronenspinresonanz (ESR), gewissermaßen ein Ableger der aus der Medizin bekannten Magnet-Resonanz-Tomographie (MRT). Im Gegensatz zur MRT benötigt man hierfür aber "nur" 100 Milliarden solcher magnetischer Zustände. Organische Filme aus Fullerenen (C60-Moleküle), die in nur wenige Nanometer (Millionstel Millimeter) dicken Schichten auf einen Träger von der Größe einer Handytaste aufgetragen werden, enthalten aber nur einen Bruchteil dieser Menge. Die Berliner Forscher haben deshalb einen Trick angewendet. Damit ist es Ihnen gelungen, den Spin-Zustand von nur wenigen Elektronen im Gleichtakt (kohärent) mithilfe der ESR zu ändern und diese Änderung als Oszillationen im Probenstrom nachzuweisen. Die Methode ist so empfindlich, dass 1.000 Spin-Zustände zum Nachweis ausreichen. Dies entspricht einer Steigerung der ESR-Empfindlichkeit um über sieben Größenordnungen. "Aber das absolut erstaunliche an unserer Entdeckung ist," so der Physiker Klaus Lips, "dass die fragilen Quantenzustände, die normalerweise in anorganischen Materialien nur bei Temperaturen knapp oberhalb des absoluten Nullpunkts überleben, ihren magnetischen Fingerabdruck im Strom auch bei Zimmertemperatur hinterlassen. Das eröffnet sensationelle Möglichkeiten in der Grundlagenforschung sowie für konkrete Anwendungen."

Bedeutsam ist Ergebnis auch, weil es einen Weg aufweist, um Quanteninformationen elektrisch ein- und auszulesen. "Das Umwandeln der Spin-Quantenzustände in ein elektrisches Signal ist ein entscheidender Fortschritt für die Herstellung von molekularen Quantencomputern", so der Physiker Wolfgang Harneit.

Die Wissenschaftler haben ihre Untersuchungen an den fußballförmigen C60-Molekülen durchgeführt. Von diesen ist bekannt, dass sie Elektronen gewissermaßen anziehen. Am HMI werden Fullerene in organischen Solarzellen eingesetzt, um die Elektronen von einem anderen organischen Stoff, dem Phthalocyanin (ein Farbstoff-Molekül) zu übernehmen. Im Phthalocyanin findet die eigentliche fotoinduzierte Anregung statt, das heißt, das Licht erzeugt an dem Farbstoff-Molekül ein negativ geladenes Elektron sowie positiv geladenes "Loch". Aufgrund ihrer entgegengesetzten Ladung kann sich das Elektron jedoch nicht von seinem Gegenpart, dem "Loch" lösen. Gemeinsam bewegt sich ein solches lichterzeugtes Teilchenpaar, Exciton genannt, von Molekül zu Molekül innerhalb der organischen Schicht. Damit in der Solarzelle Strom fließt, muss das Paar getrennt werden, sodass das Elektron zum positiven Pol der Elektrode fließen kann und das "Loch" zum negativen Pol. Um diese Trennung effektiv zu beschleunigen, werden Fullerene eingesetzt, da sie Elektronen anziehen. Auf ihrem Weg aus der Solarzelle können die Elektronen jedoch wieder auf die von ihnen getrennten Löcher treffen. Dies passiert bevorzugt an Materialdefekten. Hierbei entstehen langlebige Spin-Zustände, deren Lebensdauer von den Berliner Forschern mit Hilfe der ESR synchron verkürzt wurden, was sich als Schwingung im Fotostrom abbildet. "Wir konnten so nachweisen," freut sich Klaus Lips, "dass der Fotostrom auch bei Zimmertemperatur direkt von den Spin-Zuständen abhängig ist."

Originalveröffentlichung: "Room Temperature Electrical Detection of Spin Coherence in C60"; Physical Review Letters 2007, 98, 216601.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Rotating Ring Disk Elektrode Rotator

Rotating Ring Disk Elektrode Rotator von C3 Prozess- und Analysentechnik

Präzise Rotation und einfacher Elektrodenwechsel - Entdecken Sie das innovative Rotator-System!

rotierende Scheibenelektroden
Elektrochemische Messzellen und Elektroden

Elektrochemische Messzellen und Elektroden von C3 Prozess- und Analysentechnik

Ersetzen Sie viele Messzellen mit unserer vielseitigen Voltammetriezelle für präzise Messergebnisse

elektrochemische Messzellen
Reference 620

Reference 620 von C3 Prozess- und Analysentechnik

Potentiostat / Galvanostat / ZRA mit maximaler Empfindlichkeit und minimalem Rauschen für wegweisende Forschung

elektrochemische Systeme
Interface 1010

Interface 1010 von C3 Prozess- und Analysentechnik

Optimieren Sie Ihre elektrochemische Messungen für präzise Ergebnisse und vielfältige Anwendungsmöglichkeiten

Potentiostate
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

virtual battery day 24