Forscher des Max-Born-Instituts in Berlin haben herausgefunden, dass sich Graphit auf ultrakurzen Zeitskalen wie ein Halbleiter verhält. Die Ergebnisse sind von grundlegender Bedeutung für künftige elektronische Bauelemente aus Kohlenstoff, die hohe elektrische Spannungen oder hohe Frequenzen verarbeiten. Nanomaterialien aus Kohlenstoff besitzen einzigartige Eigenschaften, die erste Anwendungen in neuen elektronischen Bauelementen und Sensoren gefunden haben. Grundlage dieser Materialien sind atomar dünne Schichten aus regelmäßig angeordneten Kohlenstoffatomen, zum Beispiel eine einzelne ebene Schicht in sogenanntem "Graphen" oder aufgerollte Schichten in Kohlenstoff-Nanoröhrchen. Die Eigenschaften von Elektronen in solchen Strukturen sind verwandt mit denen in Graphitkristallen, die aus einem Stapel vieler Graphenschichten bestehen. Trotz intensiver Forschung ist das grundlegende Verhalten von Elektronen nicht vollständig verstanden und wird kontrovers diskutiert. Wissenschaftler des Max-Born-Instituts in Berlin, Markus Breusing, Claus Ropers und Thomas Elsässer, haben jetzt das Verhalten von Elektronen in dünnen kristallinen Graphitschichten in Echtzeit untersucht. Wie sie in der Zeitschrift Physical Review Letters berichten, zeichneten sie die Bewegungen der Elektronen mit einer bisher unerreichten Zeitauflösung von 10 Femtosekunden auf. Dazu regten sie Elektronen mit ultrakurzen Laserimpulsen in Zustände hoher Energie an und beobachteten ihre Rückkehr zum Gleichgewicht. Einzelne Schritte dieses Ablaufs lassen sich zeitlich trennen und so die momentane Verteilung der Elektronen auf verschiedene Zustände bestimmen. Innerhalb von 30 Femtosekunden bilden die Elektronen ein heißes Gas mit einer extrem hohen Temperatur von 2500 °C aus, das im Kristall innerhalb von nur 500 Femtosekunden auf etwa 200 °C abkühlt. Die dabei freiwerdende Energie wird an das Kristallgitter übertragen. Danach kehren die Elektronen auf einer deutlich langsameren Zeitskala in ihre ursprünglichen Zustände zurück. Diese Untersuchungen zeigen erstmals eindeutig, dass sich Graphit auf ultrakurzen Zeitskalen wie ein Halbleiter, also etwa wie Silizium oder Galliumarsenid, und nicht wie ein Metall verhält. Die beobachtete Dynamik der Elektronen hat einen starken Einfluss auf den elektrischen Transport, wie etwa Ströme, die bei hohen Frequenzen durch das Material fließen. Die Beobachtungen sind von grundlegender Bedeutung für künftige elektronische Bauelemente aus Kohlenstoff, die hohe elektrische Spannungen oder hohe Frequenzen verarbeiten. Originalveröffentlichung: Markus Breusing, Claus Ropers, and Thomas Elsaesser; "Ultrafast Carrier Dynamics in Graphite"; Physical Review Letters 2009, Band 102, Ausgabe 08
Graphit besteht aus Lagen von Kohlenstoffatomen, die in den Schichten eine regelmässige Anordnung von Sechsecken bilden. Die chemischen Bindungen innerhalb der Lagen sind ca. 50 mal stärker als zwischen den Schichten, weshalb diese leicht getrennt werden können. Diese Eigenschaft wird bei der Verwendung als Bleistiftmine ausgenutzt. Eine einzelne Kohlenstoffschicht bezeichnet man Graphen.
MBI