Kohlenstoff-Nanotubes zeigen überraschende Reibungseigenschaften
Universität Hamburg
Reibungskräfte sind bei einer Vielzahl von Vorgängen in unserem täglichen Leben, wie z. B. beim Spielen von Streichinstrumenten, beim Tangotanzen und beim Autofahren von Bedeutung. Molekulare Nanoröhren aus Kohlenstoff, sogenannte Kohlenstoff-Nanotubes, sind bekannt für ihre hervorragenden thermischen, mechanischen und elektrischen Eigenschaften. Über ihre Reibungseigenschaften war bisher sehr wenig bekannt. Die Wissenschaftler von der Universität Hamburg, aus Italien und den USA kamen nun zu überraschenden Ergebnissen: Mit Hilfe eines Rasterkraft-Mikroskops untersuchten sie die Reibungskräfte parallel und quer zur Nanotube-Achse. Erstaunlicherweise fanden sie einen bis zu 20-mal höheren Reibwert in Querrichtung als in paralleler Richtung. Die Untersuchungen ergaben, dass nicht nur die elastischen Verformungen der steifen Kohlenstoff-Kohlenstoff-Bindungen eine Rolle spielen, sondern auch eine viel weichere Gesamtbewegung der Kohlenstoff-Röhrchen, ähnlich einem "verhindertem Rollen". Diese "Weichheit" ist die Quelle der zusätzlichen Reibungsverluste in Querrichtung und damit der erhöhten Reibung.
Die Erkenntnisse helfen, die mechanischen Eigenschaften von Nanotubes besser zu verstehen und ihre thermischen, mechanischen und elektrischen Eigenschaften besser auszunutzen. Die Kohlenstoff-Nanotubes könnten so in vielen Anwendungsbereichen der Materialwissenschaft, z. B. in der Medizintechnik, im Flugzeugbau oder auch in der Elekronik, neue Herstellungsverfahren einleiten.
Originalveröffentlichung: Nature Materials, (Advance online publication) 13.9.2009
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.