Kupferverbindung als Recheneinheit in Quantencomputern
Chemiker synthetisieren Molekül als mögliches Bauteil für Quantencomputer
Jan-Peter Kasper/FSU
Molekül mit ausreichend langlebigem Spinzustand
„Um ein Molekül als Qubit – so nennt man die Recheneinheit eines Quantencomputers – einsetzen zu können, benötigt es einen ausreichend langlebigen Spinzustand, der von außen manipuliert werden kann“, erklärt Prof. Dr. Winfried Plass von der Universität Jena. „Das bedeutet, der gerichtete Eigendrehimpuls der Elektronen des Moleküls, also der Spinzustand, muss so stabil sein, dass man Informationen eingeben und auslesen kann.“ Genau diese Bedingung erfüllt das von Plass und seinem Team hergestellte Molekül.
Es handelt sich dabei um eine sogenannte Koordinationsverbindung und enthält somit organische und metallische Bestandteile. „Das organische Material bildet hierbei ein Gerüst, in dem sich die Metallionen auf ganz bestimmte Weise anordnen“, beschreibt Benjamin Kintzel, der federführend an der Herstellung des Moleküls beteiligt war. „In unserem Fall liegt ein dreikerniger Kupferkomplex vor. Das Besondere dabei: Die Kupferionen bilden innerhalb des Moleküls ein exakt gleichseitiges Dreieck.“ Nur so können die Elektronenspins der drei Kupferzentren so stark miteinander wechselwirken, dass das Molekül einen Spinzustand entwickelt, der es zu einem von außen addressierbaren Qubit macht.
„Auch wenn wir bereits wussten, wie unser Molekül theoretisch aussehen soll, so ist die Synthese doch eine ziemlich große Herausforderung“, sagt Kintzel. „Gerade die gleichseitige Dreiecksanordnung tatsächlich zu erreichen, gestaltet sich schwierig, da wir das Molekül kristallisieren müssen, um es genau charakterisieren zu können. Und wie sich ein solches Teilchen im Kristall verhält, lässt sich nur schwer vorhersagen.“ Mit verschiedenen chemischen Werkzeugen und unterschiedlichen Feinabstimmungen während des Herstellungsprozesses ist es aber gelungen, das gewünschte Resultat hervorzubringen.
Informationen einschreiben durch elektrisches Feld
Das in Jena hergestellte Molekül bietet zudem laut theoretischen Vorhersagen einen weiteren elementaren Vorteil gegenüber anderen Qubits. „Der theoretische Bauplan unserer Kupferverbindung sieht vor, dass sich ihr Spinzustand mit elektrischen Feldern auf molekularer Ebene ansteuern lässt“, sagt Plass. „Bisher kommen hier vor allem magnetische Felder zum Einsatz, mit denen man allerdings nicht auf einzelne Moleküle fokussieren kann.“ Eine Forschergruppe im britischen Oxford, die mit den Jenaer Chemikern kooperiert, untersucht diese Eigenschaft des an der Friedrich-Schiller-Universität synthetisierten Moleküls derzeit durch verschiedene Experimente.
Das Chemikerteam der Universität Jena ist davon überzeugt, dass sein Molekül die Anforderungen erfüllt, um als Qubit eingesetzt zu werden. Ob es aber tatsächlich später als Recheneinheit Verwendung findet, lässt sich nur schwer vorhersagen. Denn wie Moleküle tatsächlich in Quantencomputer integriert werden können, dafür gibt es noch keine ultimative Lösung. Dafür ist auch Expertise im Bereich der Chemie gefragt – die Jenaer Experten jedenfalls sind vorbereitet.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.