Forschern gelingt Durchbruch bei Lithium-Ionen-Batterien

Längere Akku-Laufzeit: Lithium-Ionen-Batterien auf nächste Leistungsstufe gehoben

17.12.2018 - Österreich

Herkömmliche Lithium-Ionen-Akkus, wie sie in Smartphones und Notebooks zum Einsatz kommen, stoßen zunehmend an Leistungsgrenzen. Materialwissenschafter Freddy Kleitz von der Fakultät für Chemie der Universität Wien hat mit internationalen Wissenschaftern nun ein neues nanostrukturiertes Material für die Anode von Lithium-Ionen-Akkus entwickelt, das den Batterien mehr Leistung und Lebensdauer bringt. Das Material auf Basis eines halbporösen Mischmetalloxids in Kombination mit Graphen könnte einen Ansatz bieten, um die Batterien in Großgeräten wie Elektro- oder Hybrid-Fahrzeugen besser nutzen zu können.

© Freddy Kleitz/Universität Wien und Claudio Gerbaldi/Politecnico di Torino

HRSEM-Bild eines 3D/2D-CuO-NIO Graphen-Nanokomposits als aktives Anodenmaterial.

Eine hohe Energiedichte, eine hohe Anzahl an Ladezyklen und keinen Memory-Effekt: Lithium-Ionen-Akkus sind die am weitesten verbreiteten Energiespeicher für mobile Geräte sowie Hoffnungsträger für die Elektromobilität. Die Forschung sucht nach neuen Typen von aktivem Eletrodenmaterial, um die Batterien noch leistungsfähiger, langlebiger und damit auch besser nutzbar für Großgeräte zu machen. "Nanostrukturiertes Material für Lithium-Ionen-Akkus kann hier einen erfolgreichen Weg vorgeben", sagt Freddy Kleitz vom Institut für Anorganische Chemie, der gemeinsam mit Claudio Gerbaldi, Leiter der Gruppe für Angewandte Material- und Elektrochemie am Politecnico di Torino (Italien), Erstautor der Studie ist.

Die von den zwei Forschern und ihren Teams entwickelte neue nanostrukturierte 2D/3D-Verbindung aus Mischmetalloxiden und Graphen steigerte deutlich die elektrochemische Leistung der Akkus: "Die Batteriekapazität war mit bis zu über 3.000 reversiblen Ladezyklen, sogar bei sehr hohen Strombelastungen von bis zu 1.280 Milliampere, bespiellos", so Institutsvorstand Kleitz. Heutige Lithium-Ionen-Akkus verlieren nach etwa 1.000 Ladezyklen an Leistungsfähigkeit.

Neue Rezeptur

Die Anode handelsüblicher Lithium-Ionen-Akkus besteht häufig aus einem Kohlenstoff-Material wie Graphit. "Metalloxide weisen eine höhere Batteriekapazität als Graphit auf, sind aber eher instabil und wenig leitfähig", so Kleitz. Die Forscher haben einen Weg gefunden, die positiven Eigenschaften beider Stoffe in einer neuartigen Verbindung bestmöglich zu nutzen. Sie haben eine neue Familie für aktives Elektrodenmaterial aus halbdurchlässigen Mischmetalloxiden, bestehend aus Kupfer und Nickel, in Kombination mit dem elektrisch leitfähigen und stabilisierend wirkenden Graphen entwickelt. Das Material weist im Vergleich zu den meisten bereits bekannten Metalloxid-Nanostrukturen und Verbundwerkstoffen überlegene Eigenschaften auf.

Um das Mischmetall mit Anteilen von Kupfer und Nickel kontrolliert und homogen erstellen zu können, entwickelten sie eine neue Kochprozedur für die Metalle. Unter Einsatz des Nanocasting-Verfahrens – einer Methode zur Herstellung von mesoporöser Materialien – schuf das Team anschließend geordnete nanoporöse Mischmetall-Oxid-Kügelchen, die aufgrund ihres weitflächigen Netzwerkes an Poren eine sehr hohe aktive Reaktionsfläche für den Austausch mit den Lithium-Ionen aus dem Elektrolyt der Batterie aufweisen. Über ein anschließendes Sprühtrockenverfahren werden die Mischmetalloxid-Partikel mit hauchdünnen 2D-Graphenschichten ummantelt und von diesen durchdrungen.

Einfaches und effizientes Design

Die Verwendung von Lithium-Ionen-Akkus für die Elektromobilität gilt aus Umweltsicht, z.B. aufgrund ihrer rohstoffintensiven Produktion, als eher problematisch. Kleine Akkus, die möglichst viel Energie speichern können, lange halten und nicht zu kostenintensiv in ihrer Herstellung sind, könnten ihren Einsatz in Großgeräten vorantreiben. "Im Vergleich zu den bestehenden Ansätzen ist unsere innovative Design-Strategie für leistungsfähiges und langlebiges Anodenmaterial einfach und effizient. Es handelt sich um einen wasserbasierten Prozess und ist von daher umweltfreundlich und bereit zur Anwendung auf industrieller Ebene", so die Studienautoren.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Battery Testing Services

Battery Testing Services von Battery Dynamics

Erfahren Sie mehr über die Leistungsfähigkeit und Lebensdauer Ihrer Batteriezellen in kürzerer Zeit

Profitieren Sie von moderner Messtechnik und einem erfahrenen Team

Messtechnik-Dienstleistungen
Batt-TDS

Batt-TDS von ystral

YSTRAL Batt-TDS Misch- und Dispergiermaschine

Boosten Sie Ihren Batterie-Slurry-Prozess

Dispergierer
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

30+ Produkte
150+ Unternehmen
35+ White Paper
20+ Broschüren
Themenwelt anzeigen
Themenwelt Batterietechnik

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

30+ Produkte
150+ Unternehmen
35+ White Paper
20+ Broschüren