Integrierte Steuerungen für Mini-Chemielabor auf einem Chip

20.11.2019 - USA

Seit den 90er Jahren erforschen Wissenschaftler die Möglichkeiten miniaturisierter chemischer "Labore" auf einem Chip, die als Point-of-Care-Diagnostik, Analysekits für die Feldforschung und eines Tages sogar chemische Tests auf anderen Planeten ermöglichen.

Saint Louis University

Ein mikrofluidischer Chip, dargestellt mit einer Büroklammer als Skala.

Saint Louis University

Flüssigkeit wirbelt um Hindernisse herum, wenn Wassermoleküle von ihrem Weg abgelenkt werden.

Saint Louis University
Saint Louis University

In einem normalen Labor verwenden Chemiker Becher, um Chemikalien zu mischen und Reaktionen zu untersuchen. In einem miniaturisierten Labor können mikrofluidische Systeme chemische Experimente auf einem Chip durch eine Reihe von kleinen verbundenen Röhren von der Größe eines Haares durchführen.

Diese Technologie wird derzeit vor allem im medizinischen Bereich eingesetzt, der Organe auf einem Chip für die Forschung erzeugt. Das Potenzial der Technologie ist jedoch noch nicht vollständig ausgeschöpft, da die chemischen Reaktionen durch große Anlagen gesteuert werden, die oft außerhalb des Chips liegen.

In einer kürzlich in Nature veröffentlichten Studie teilten Forscher der Saint Louis University zusammen mit Kollegen der Northwestern University und der Normandie Universite ihre Entdeckung einer Möglichkeit zur Programmierung von integrierten Steuerungen in einem mikrofluidischen Netzwerk mit.

"Wir haben uns von der Elektronik inspirieren lassen, in der die Steuerung eines Chips in sich geschlossen ist", sagt Dr. Istvan Kiss, Professor für Chemie an der Saint Louis University. "Als wir mit der Forschung auf diesem Gebiet begannen, sagten wir: "Warum bauen wir nicht winzige kleine Reaktoren, die einen Submillimeter groß sind. Wir verwendeten nur eine kleine Anzahl von Reaktoren, so dass die Steuerung des Durchflusses mit einfachen, winzigen Rohren einfach war. Aber jetzt, um die Technologie voranzubringen, müssen wir den Chip etwas komplizierter machen, mit vielen Reaktoren und Röhren dazwischen, um mehr wie eine Schaltung zu funktionieren."

Um dieses Problem zu lösen, kombinierten die Forscher Netzwerktheorie und Strömungsmechanik und schufen Steuerungen, die vollständig auf dem Chip betrieben wurden.

Zusammen mit Dr. Yifan Liu, wissenschaftlicher Mitarbeiter an der SLU, und anderen Kollegen entwarf Kiss ein Netzwerk mit einem nichtlinearen Zusammenhang zwischen angelegtem Druck und Durchfluss, mit dem die Richtung des Flüssigkeitsdurchflusses durch einfache Änderung des Eingangs- und Ausgangsdrucks geändert werden kann.

Ausgehend von einer kontraintuitiven Theorie über Verkehrsmuster fanden die Wissenschaftler heraus, dass Abkürzungen nicht immer der schnellste Weg von Punkt A nach Punkt B sind. Ein Phänomen, das als Braess's Paradoxon bekannt ist, hat gezeigt - in Verkehrsmustern, Elektronik, Federn - dass manchmal mehr Wege zum Reisen den Verkehr tatsächlich verlangsamen, anstatt ihn zu beschleunigen.

"Wir haben ein Netzwerk aufgebaut, das dieses Paradoxon zeigt", sagte Kiss. "Als wir untersuchten, wie Wassermoleküle um Hindernisse herum laufen, entstand ein Ventil. Wassermoleküle werden von ihren Wegen abgelenkt. Bei niedrigen Durchflussraten gehen sie auf die Hindernisse zu, während bei hohen Durchflussraten sie in die entgegengesetzte Richtung gehen."

"Wenn wir einen Abkürzungskanal schließen, führt dies zu einem höheren und nicht zu einem niedrigeren Gesamtdurchfluss. Wir sind daran interessiert, wie solche Änderungen der Durchflussmengen und -richtungen letztendlich die chemischen Reaktionen in den Reaktoren verändern werden."

Diese Technologie könnte sowohl für die Entwicklung tragbarer Labor-Testsysteme als auch für die Entwicklung neuer Anwendungen wie z.B. Wearables zur Gesundheitsüberwachung oder Deployable Space Systems eingesetzt werden.

Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...