Ein gewaltiger Fortschritt in der Spektrometrie
Studienergebnisse können zu genaueren medizinischen, biologischen und chemischen Tests führen
Kanazawa University
Kanazawa University
Kanazawa University
MS-Instrumente arbeiten, indem sie den Analytmolekülen eine elektrische Ladung geben und sie durch einen Bereich des Raums mit einem gleichmäßigen elektrischen Feld schießen, das ihre Flugbahn zu einem Kreis krümmt. Der Radius des Kreises, der vom Verhältnis der Masse des Moleküls zu seiner Ladung abhängt, wird erfasst und mit bekannten Proben verglichen. Da die Methode nur dieses Verhältnis und nicht die Masse selbst messen kann, können überschüssige Ladungen zu ungenauen oder mehrdeutigen Ergebnissen führen.
Nun hat ein Forscherteam unter der Leitung der Kanazawa Universität eine leistungsstarke Molekulardynamiksimulation verwendet, um die Auswirkungen von überschüssigen Ladungen auf die mit einem MS getesteten Moleküle besser zu verstehen. Sie modellierten den Effekt der Zugabe von Molekülen mit entgegengesetzter Ladung, um die überschüssige Ladung zu neutralisieren. In diesem Fall kann die positive Ladung auf Polyethylenglykol (PEG) durch Kollision mit negativ geladenen NO2-Ionen reduziert werden.
Dies wird jedoch dadurch erschwert, dass die Wahrscheinlichkeit einer Kollision von der Menge der Ladung abhängt, die überhaupt vorhanden ist. "Geladene Polymere können aufgrund der elektrostatischen Streckung ladungszustandsabhängige Strukturen annehmen", sagt Erstautor Tomoya Tamadate. Zum Beispiel nimmt PEG bei geringer Überschussladung eine kompakte Form an. Wenn die Ladung jedoch zunimmt, führt die gegenseitige Abstoßung zwischen den positiven Ladungen dazu, dass es sich gerade ausrichtet.
Um die Berechnungen zu beschleunigen, nutzte das Team die Methode der Kontinuumsapproximation", die erst dann mit der Simulation aller Atome des NO2-Moleküls begann, wenn es sich nahe genug an das PEG annäherte.
"Der Erfolg dieses Projekts zeigt, dass hybride Kontinuum-Molekulardynamik-Simulationen allgemeiner eingesetzt werden können, um kollisionsgetriebene Reaktionen zu untersuchen - Moleküle, die verschiedene Konformationen annehmen können", sagt Seniorautor Takafumi Seto. Die Ergebnisse können zu effektiveren Methoden zur Kontrolle der überschüssigen Ladung in Probenmolekülen führen, was genauere Ergebnisse ermöglicht.
Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Massenspektrometrie
Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!
Themenwelt Massenspektrometrie
Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!