Tiefer Einblick dank Neutronen aus der Laserquelle

Der Drang, Verborgenes sichtbar zu machen ist seit je her eine Triebfeder der Forschung

28.03.2022 - Deutschland

Ein Team unter Leitung der TU Darmstadt hat erstmals mit Lasern erzeugte Neutronen für eine industrielle Anwendung nutzbar gemacht. Die Forschenden zeigten, dass Neutronen, die kompakt mit Lasern erzeugt werden, in der zerstörungsfreien Materialprüfung zum Einsatz kommen können. Als elektrisch neutrale Teilchen durchdringen Neutronen Materie relativ leicht. Daraus ergeben sich vielfältige Anwendungsmöglichkeiten wie etwa die Prüfung von Behältern mit radioaktivem Abfall. Die Ergebnisse wurden im Magazin „Nature Communications“ veröffentlicht.

Unsplash

Symbolbild

Der Drang, Verborgenes sichtbar zu machen ist seit je her eine Triebfeder der Forschung. Nutzerinnen und Nutzer in Wissenschaft und Industrie können hier auf eine breite Palette von Möglichkeiten zugreifen. So lässt sich beispielsweise mit Röntgenstrahlung ins Innere von Objekten sehen. Leichte Elemente wie Wasserstoff oder organische Substanzen lassen sich so aber nur schwer erkennen und unterscheiden, besonders, wenn sie sich hinter schwereren, abschirmenden Elementen befinden. Abhilfe kann hier die Verwendung von Neutronen liefern, die auf diese Materialien besonders sensitiv sind und Abschirmungen wie Blei mühelos durchdringen können.

Dazu kommt die einzigartige Fähigkeit, dass mit Hilfe von Neutronen verschiedene Isotope unterschieden werden können, was es ermöglicht, die räumliche Verteilung von Isotopen innerhalb eines Objekts eindeutig zu bestimmen. „Beschießt“ man also ein Untersuchungsobjekt mit Neutronen, lässt sich aus der Isotopenverteilung auf seinen Inhalt schließen.

Dies ist vor allem für den Rückbau kerntechnischer Anlagen von hoher Bedeutung, da dort im letzten Jahrhundert große Mengen an Behältern mit radioaktivem Abfall produziert und in Zwischenlagern untergebracht wurden. Bevor diese jedoch weiter in Endlager gebracht werden können, müssen deren Inhalte eindeutig identifiziert werden. Dies erweist sich mit klassischer Röntgentechnik als schwierig, da diese Behälter oftmals so konzipiert sind, dass sie für diese Art der Strahlung möglichst undurchsichtig sind.

Wie lassen sich nun Objekte mit Neutronen untersuchen? Die dafür nötigen Neutronenstrahlen werden üblicherweise an großen Teilchenbeschleunigeranlagen erzeugt, deren Bau und Betrieb äußerst kostenintensiv sind. Erschwerend kommt hinzu, dass die zu untersuchenden Objekte nicht zu den wenigen existierenden Großanlagen transportiert werden können. Diese Technik ist damit einem Großteil der Industrie nicht zugänglich.

Forschende des Instituts für Kernphysik an der TU Darmstadt unter der Leitung von Dr. Marc Zimmer und Professor Markus Roth haben es vor kurzem geschafft, die konventionellen Beschleuniger durch einen hoch intensiven Laser zu ersetzen und damit Neutronen zu erzeugen. Dadurch wurde die Strecke von typischerweise hunderten von Metern, die zur Beschleunigung und die Vermessung der Proben notwendig ist, auf unter zwei Meter reduziert. Möglich wurde das zum einen durch die Verwendung von ultra-kurzpuls-Lasern, basierend auf der „Chirped-Pulse-Amplification“-Methode, für die 2018 der Nobelpreis vergeben wurde. Zum anderen wurden für die Untersuchungen am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt die Bedingungen so weit optimiert, dass gleich mehrere industriell relevante Anwendungen demonstriert werden konnten.

Im Experiment konnte gezeigt werden, dass eine derartige kompakte lasergetriebene Neutronenquelle tatsächlich dafür genutzt werden kann, zerstörungsfrei verschiedene Isotope in Werkstücken zu identifizieren und sogar räumlich „sichtbar“ zu machen. In einem der Werkstücke konnte zudem eine vorher unbekannte Verunreinigung nachgewiesen werden. Neben dem Einsatz für radioaktive Abfälle sind mit der Neutronenquelle auch andere Anwendungen vorstellbar, etwa die zerstörungsfreie Untersuchung von archäologischen Fundstücken oder das Sichtbarmachen des Treibstoffflusses innerhalb eines Motors im laufenden Betrieb.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...