Weiterer Durchbruch auf dem Weg zu einer nachhaltigeren Photochemie gelungen
Forschungsteam realisiert erstmalig effiziente Energieumwandlung mit Chromverbindungen
photo/©: Yi You
Chromverbindungen sind eine vielversprechende Alternative
Heutzutage verwenden die meisten photochemischen und photophysikalischen Anwendungen, darunter zum Beispiel phosphoreszierende organische Leuchtdioden, Farbstoffsolarzellen oder lichtgetriebene chemische Reaktionen, Edelmetalle wie Gold, Platin, Ruthenium, Iridium oder Seltenerdmetalle. Edelmetalle sind jedoch teuer, weil sie knapp sind, während Seltene Erden nur in wenigen Ländern, insbesondere in China, abgebaut werden. Außerdem geht der Abbau oft mit einem erheblichen Verbrauch an Wasser, Energie und Chemikalien einher. In einigen Fällen, etwa bei der Gewinnung von Gold, werden sogar hochgiftige Substanzen wie Zyanid oder Quecksilber eingesetzt.
Dagegen sind die Vorkommen von Chrom – der Name des Metalls geht auf das altgriechische Wort für Farbe zurück – in der Erdkruste zehntausend Mal größer als die von Platin und hunderttausend Mal größer als die von Iridium. Chrom ist also in ausreichenden Mengen vorhanden. "Leider sind die photophysikalischen Eigenschaften von häufigen Metallen wie eben Chrom oder Eisen nicht gut genug für die technologischen Anwendungen. Das betrifft vor allem die Lebensdauer und Energie der elektronisch angeregten Zustände", erklärt Katja Heinze, Professorin im Department Chemie der JGU. Erst in den vergangenen Jahren sind hier deutliche Fortschritte erzielt worden, wozu das Team um Heinze maßgeblich beigetragen hat. So war es etwa an der Entwicklung der molekularen Rubine beteiligt. Dabei handelt es sich um lösliche molekulare Verbindungen, die außergewöhnlich gute Eigenschaften im angeregten Zustand besitzen. Molekulare Rubine werden bereits als molekulare optische Thermometer und Drucksensoren eingesetzt.
Direkte Beobachtung der Energietransferprozesse erfolgt mit einem neuen Laser-Großgerät
Dem Team aus Mainz und Berlin ist nun ein weiterer Durchbruch gelungen. "Dabei haben wir einen neuartigen Mechanismus beobachtet und die hohe Effizienz der neuen Chromverbindungen im Detail verstanden", erklärt Prof. Christoph Kerzig. Die Forschenden konnten den ungewöhnlichen Energietransferprozess mit einem Laser-Großgerät, das die Arbeitsgruppe von Kerzig kürzlich in Betrieb genommen hat, direkt beobachten. Gleichzeitig wurde festgestellt, dass es zu keinen Energieverlusten oder Nebenreaktionen kommt. Damit ist der Grundstein für eine effiziente Anwendung der neuartigen Vorgehensweise gelegt, um Sonnenenergie mithilfe von Chromverbindungen zu übertragen und umzuwandeln.
Die Forschung kann damit in Zukunft neue, lichtgetriebene Reaktionen mit dem weitverbreiteten Metall Chrom entwickeln, anstatt die seltenen und teureren Ruthenium- und Iridiumverbindungen zu verwenden, die heute noch am häufigsten zum Einsatz kommen. "Zusammen mit unseren Partnern von der Bundesanstalt für Materialforschung und -prüfung und von anderen Universitäten werden wir unseren Einsatz für eine nachhaltigere Photochemie weiter vorantreiben", betont Prof. Dr. Katja Heinze.