Nanomembranen mit Porenmolekülen für effizienteres Filtern

Völlig neuartiges, ultradünnes Filtermaterial für die Umwelt-, Lebensmittel-, Medizin- oder chemisch-pharmazeutische Industrie

05.09.2022 - Deutschland

Zwei Physiker der Universität Bielefeld haben zusammen mit Wissenschaftler*innen der Queen Mary University of London, des Imperial College London (beide Großbritannien) und der Northwestern University in Evanston (Illinois, USA) eine neue Methode zur Herstellung von ultradünnen Nanomembranen entwickelt. Durch die Verwendung maßgeschneiderter Porenmoleküle, die sich zu einem dichten Netzwerk aus winzigen Kanalstrukturen vernetzen lassen, entsteht ein völlig neuartiges, ultradünnes Filtermaterial, das in der Umwelt-, Lebensmittel-, Medizin- oder chemisch-pharmazeutischen Industrie angewendet werden kann. Die Forschungsergebnisse hat das interdisziplinäre Team in der Fachzeitschrift Nature veröffentlicht.

Universität Bielefeld/C. Pelargus

Prof. Dr. Dario Anselmetti von der Universität Bielefeld mit einem Kugelmodell eines Cyclodextrin-Moleküls – Basis der neuen Nanomembranen. Der Doktorand Niklas Biere hält das Modell des Kraftsensors, mit dem die Membran abgetastet wurde.

In vielen technisch-industriellen Prozessen spielt die Auftrennung, Aufreinigung oder das Filtern von molekularen Substanzen eine zentrale Rolle – sei es für die Bereitstellung von sauberem oder entsalztem Trinkwasser, in der medizinischen Diagnostik und Therapie,  der Raffinierung von Erdöl oder auch der Produktion von chemischen oder pharmazeutischen Produkten. „Bei solchen Prozessen werden etwa 50 Prozent des Energieverbrauchs für diese molekularen Trennungen aufgebracht“, sagt Professor Dr. Dario Anselmetti von der Fakultät für Physik der Universität Bielefeld. 

Herkömmliche Filtermaterialien sind wenig selektiv und müssen zudem energieintensiv durch hohe Drucke betrieben werden. „Um diese Prozesse energieeffizienter, kostengünstiger, umweltverträglicher und damit nachhaltiger zu machen, müssen neue Trenn- und Filtrierverfahren entwickelt werden“, sagt Anselmetti. „Unsere Nanomembranen sind nur wenige Moleküllagen dünn, von ihrer Architektur definierter und deshalb viel energieeffizienter und selektiver“. Chemiker und Erstautor der Publikation, Dr. Zhiwei Jiang vom Imperial College in London, erklärt: „Wir arbeiten mit Membran-Poren aus Molekülen, deren Größe und Beschaffenheit vor der Herstellung der Membran nach Bedarf eingestellt werden.“

Diese sogenannten Cyclodextrine sehen aus wie kleine Donuts, sie variieren in Größe und Durchmesser. Es sind kleine, zu Ringen geschlossene Zuckermoleküle, die aufgrund ihrer Struktur und Biokompatibilität vielfältig eingesetzt werden können. Je nachdem, wie groß das zu filternde Molekül ist, werden halbseitig funktionalisierte Cyclodextrine einer bestimmten Größe ausgerichtet aneinandergesetzt und chemisch vernetzt. Stapelt man sie dann übereinander, bilden die Cyclodextrine Kanäle mit dem Durchmesser des Ausgangsmoleküls in der Membran. Alle Membranporen in dieser einen Filterschicht sind also identisch.

Membran-Poren sichtbar machen

Mit der Rasterkraftmikroskopie forscht und untersucht Niklas Biere, Doktorand an der Fakultät für Physik in Dario Anselmettis Arbeitsgruppe „Oberflächen mit atomarer Präzision“. In seiner Promotion hat er das ausgeklügelte Verfahren entwickelt, das die Beschaffenheit der winzig kleinen Filterporen unter Ultrahochvakuumbedingungen und bei tiefen Temperaturen (minus 200 Grad Celsius) sichtbar machen kann. „So konnten wir den Kolleg*innen aus London ermöglichen, ihre Membranen im Detail zu sehen, und wir konnten bestätigen, dass diese wirklich so aussehen wie vermutet“, sagt Biere.

Die molekulare Oberfläche der Nanomembran wird bei dieser Methode mit einer ultrafeinen und „atomar scharfen“ Spitze eines Kraftsensors abgefahren. Sie tastet die Oberfläche ab und überschreibt die molekulare Beschaffenheit der Membran in ein Relief. Das Bild, das im Computer des Bielefelder Labors entstand, konnte belegen, dass die Membran eine extrem enge Porengrößenverteilung aufweist, die sich je nach verwendetem Cyclodextrin-Ausgangsmolekül unterscheidet.

Methode verspricht viele Einsatzmöglichkeiten

Bereits jetzt gibt es die neuartige Filtermembran im DIN-A4-Format – ein industrielles Upscaling lässt sich demnach gut realisieren. Und es bieten sich zahlreiche Möglichkeiten der praktischen Anwendung: Bei der Trinkwasseraufbereitung oder dem Entsalzen von Meerwasser etwa. „Durch die Nanomembrantechnologie ist so eine Filterung vielleicht handbetrieben oder mit einer einfachen Solaranlage umzusetzen“, sagt Dario Anselmetti. Für Niklas Biere bietet die spezialisierte Filterschicht in Medizin und Pharmazie zusätzliche Einsatzmöglichkeiten: „Etwa bei Blutuntersuchungen, der Dialyse oder der Produktion von Medikamenten.“ Modellhaft konnte gezeigt werden, dass die neue Membran bei der Anreicherung von Cannabidiol (CBD) sehr vorteilhaft eingesetzt werden konnte, wobei „es darauf ankommt, das CBD von anderen Komponenten ganz ähnlicher Größe effizient zu trennen“, ergänzt Chemiker Zhiwei Jiang.

Die Erforschung und Entwicklung von Filtern im Nano-Maßstab ist einer der international sichtbaren Forschungsschwerpunkte der Fakultät für Physik der Universität Bielefeld: Die Universität leitet das internationale Projekt „Water separation revolutionized by ultrathin carbon nanomembranes“ (Revolutionierte Wasserabspaltung durch ultradünne Kohlenstoff-Nanomembranen), Kurztitel: „Its-thin“. Forschende aus Deutschland, Slowenien, Griechenland, Frankreich, Lettland und den Niederlanden entwickeln ultradünne Filter, die Reinstwasser und Konzentrate erzeugen können.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

GF/C and 934-AH RTU (Environmental)

GF/C and 934-AH RTU (Environmental) von Cytiva

Erfüllen Sie die Abwasservorschriften mit dem richtigen Filter

Rationalisierung der Laborabläufe und Gewährleistung hochwertiger Ergebnisse

Filter
Glasfaserfiltermaterialien

Glasfaserfiltermaterialien von Cytiva

Fordern Sie ein Glasmikrofaser-Musterpaket für Ihre Batterieentwicklung an

Effiziente und konsistente Ergebnisse

Filtermaterialien
Mini-UniPrep™

Mini-UniPrep™ von Cytiva

Verbesserte HPLC-Probenvorbereitung

Sparen Sie 66 % Probenvorbereitungszeit und senken Sie die Kosten um 40 %

FIBRETHERM

FIBRETHERM von C. Gerhardt

Automatische Faserextraktion für die Futtermittelanalyse

FIBRETHERM von C. Gerhardt: Effizient – Präzise – Methodenkonform

Faseranalysatoren
VICI Jour Katalog 15INT

VICI Jour Katalog 15INT von VICI

Der VICI Jour Katalog - Zubehör für Flüssigchromatographie und Liquid Handling

Kapillaren, Schläuche, Fittinge, Filter, Safety-Produkte, Werkzeuge uvm

Chromatographie-Zubehör
Whatman filtration product guide

Whatman filtration product guide von Cytiva

Neuer Filtrations-Katalog - geballte Informationen auf 286 Seiten

Entdecken Sie perfekt passende Filter für Ihre Anwendung im Labor

Filter
Hahnemühle LifeScience Katalog Industrie & Labor

Hahnemühle LifeScience Katalog Industrie & Labor von Hahnemühle

Große Vielfalt an Filterpapieren für alle Labor- und industrielle Anwendungen

Filtrationslösungen im Bereich Life Sciences, Chemie und Pharma

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...