MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
© Faidra Amargianou/ChatGPT
Seit ihrer Entdeckung im Jahr 2011 haben MXene aufgrund ihrer vielseitigen, abstimmbaren Eigenschaften und interessanter Anwendungen - von der Energiespeicherung bis zur elektromagnetischen Abschirmung - großes wissenschaftliches Interesse geweckt. Auf der Nanoskala finden dabei komplexe chemische Prozesse statt.
Das Team von Dr. Tristan Petit hat nun einen bedeutenden Fortschritt bei der Charakterisierung von MXenen erzielt. Sie nutzten die Raster-Röntgenmikroskopie (Scanning X-ray microscopy oder SXM), um die chemische Bindung von Ti3C2Tx-MXenen mit hoher räumlicher und spektraler Auflösung zu untersuchen. Dabei steht Tx für unterschiedliche Endgruppen (Tx=O, OH, F, Cl). Das Neue ist, dass die Messdaten gleichzeitig über zwei Detektionsmodi erfasst werden, der Transmission und der Elektronenausbeute. Dies ermöglicht unterschiedliche Sondierungstiefen.
Das Experiment, das an der MAXYMUS-Beamline von BESSY II stattfand, lieferte detaillierte Einblicke in die chemische Zusammensetzung und Struktur von MXenen. Faidra Amargianou, die Erstautorin der Studie, sagt dazu: "Unsere Ergebnisse werfen ein Licht auf die chemischen Bindungen innerhalb der MXene-Struktur und mit den umgebenden Spezies und bieten neue Perspektiven für ihre Nutzung in verschiedenen Anwendungen, insbesondere in der elektrochemischen Energiespeicherung."
Zum ersten Mal wurde SXM eingesetzt, um MXene abzubilden, wodurch Details der lokalen Bindungen zwischen Titan und Endverbindungen innerhalb der MXen-Struktur sichtbar wurden. Die Forscher untersuchten auch den Einfluss verschiedener Synthesewege auf die MXen-Chemie und beleuchteten die Auswirkungen von Endungen auf die elektronischen Eigenschaften von MXene.
Darüber hinaus lieferte die Anwendung von SXM bei der Analyse von MXen-basierten Materialien in Lithium-Ionen-Batterien wertvolle Erkenntnisse über die Veränderungen in der MXen-Chemie nach dem Batteriewechsel. Faidra Amargianou erklärt: "Der Großteil der MXen-Elektrode bleibt während der elektrochemischen Zyklen stabil, mit Anzeichen einer möglichen Li+-Einlagerung. Der Elektrolyt führt nicht zum Abbau des MXens und liegt auf der MXenelektrode auf".
Die Studie liefert wertvolle Einblicke in die lokale Chemie von MXenen und verdeutlicht das Potenzial der SXM für die Charakterisierung anderer Schichtmaterialien. Petit schlussfolgert: "Chemische Bildgebungsverfahren wie SXM können dazu genutzt werden, um die Wechselwirkungen von Schichtmaterialien in komplexen Systemen zu entschlüsseln. Wir arbeiten derzeit daran, elektrochemische SXM-Messungen in situ direkt in flüssiger Umgebung zu ermöglichen."
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Batterietechnik
Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.
Themenwelt Batterietechnik
Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.