[Fe]-Hydrogenase-Katalyse mittels Parawasserstoff-verstärkter Kernmagnetresonanzspektroskopie sichtbar gemacht
Spektroskopisches Verfahren ermöglicht genauere Einblicke in die Wasserstoffumwandlung
© Lukas Kaltschnee, MPI-NAT & BIN
Wasserstoff gilt als guter Kandidat für eine nachhaltige Energiewirtschaft. Doch aktuell sind gängige Verfahren in der Industrie zu seiner Gewinnung aufwendig, teuer und teilweise klimaschädlich. Verschiedene Mikroorganismen haben diesbezüglich den Menschen etwas voraus. Um zur Energiegewinnung Wasserstoff abzuspalten, nutzen sie drei verschiedene Typen von Hydrogenasen, die ohne Edelmetalle funktionieren und kein CO2 freisetzen: [NiFe]-Hydrogenasen aus Archaeen und Bakterien, [FeFe]-Hydrogenasen aus Bakterien, manchen Algen und manchen anaeroben Archaeen sowie [Fe]-Hydrogenasen, die nur in Archaeen vorkommen. Letztere spielen eine Schlüsselrolle in der Methanogenese, bei der CO2 zu Methan (CH4) reduziert wird. Die homodimere [Fe]-Hydrogenase enthält pro Untereinheit ein redox-inaktives Eisen (Fe), das an einen Guanylylpyridinol-Kofaktor gebunden ist.
Während Zwischenprodukte im katalytischen Zyklus von [NiFe]-Hydrogenasen und [FeFe]-Hydrogenasen bereits gut untersucht sind, waren die katalytischen Zwischenprodukte von [Fe]-Hydrogenasen nicht nachweisbar – bis jetzt. Forschende um Stefan Glöggler (MPI für Multidisziplinäre Naturwissenschaften (MPI-NAT) und BIN der UMG, Lukas Kaltschnee (MPI-NAT und BIN der UMG; aktuell an der TU Darmstadt), Christian Griesinger (MPI-NAT) und Seigo Shima (MPI für Terrestrische Mikrobiologie) haben jetzt zusammen mit Kolleg*innen des MPI für Kohlenforschung, der Universität Kiel und der FAccTs GmbH die Zwischenprodukte in der von [Fe]-Hydrogenasen katalysierten Reaktion erstmals beobachtet. Ihre Ergebnisse haben die Forscher bei Nature Catalysis publiziert.
Dabei machten sich die Forschenden zunutze, dass Wasserstoff abhängig von seinem Kernspin als sogenannter Parawasserstoff und Orthowasserstoff vorkommt. Sie zeigten, dass es bei der Magnetresonanzspektroskopie zu einer Signalverstärkung kommt, wenn die [Fe]-Hydrogenase mit Parawasserstoff reagiert. Diese sogenannte Parawasserstoff-induzierte Polarisation (PHIP) ermöglichte es, die Zwischenprodukte der Reaktion zu identifizieren und sichtbar zu machen, wie die [Fe]-Hydrogenase den Wasserstoff während der Katalyse bindet. Die Daten der Wissenschaftler*innen weisen darauf hin, dass während der Katalyse ein Hydrid am Eisenzentrum gebildet wird. Die neue Methode ermöglichte es auch, die Bindungskinetik zu untersuchen. Aufgrund ihrer hohen Empfindlichkeit ist die PHIP nicht zuletzt vielversprechend, um sie auf lebende Zellen anzuwenden und den Wasserstoffmetabolismus in vivo zu erforschen. Die Ergebnisse könnten zukünftig dazu beitragen, (Bio-)Katalysatoren zur Wasserstoffumwandlung mit höherer Produktivität zu entwickeln.
Originalveröffentlichung
Lukas Kaltschnee, Andrey N. Pravdivtsev, Manuel Gehl, Gangfeng Huang, Georgi L. Stoychev, Christoph Riplinger, Maximilian Keitel, Frank Neese, Jan-Bernd Hövener, Alexander A. Auer, Christian Griesinger, Seigo Shima, Stefan Glöggler; "Parahydrogen-enhanced magnetic resonance identification of intermediates in [Fe]-hydrogenase catalysis"; Nature Catalysis, 2024-12-13
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Da tut sich was in der Chemie-Branche …
So sieht echter Pioniergeist aus: Jede Menge innovative Start-ups bringen frische Ideen, Herzblut und Unternehmergeist auf, um die Welt von morgen zum Positiven zu verändern. Tauchen Sie ein in die Welt dieser Jungunternehmen und nutzen Sie die Möglichkeit zur Kontaktaufnahme mit den Gründern.
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!