Schnappschüsse von einem zentralen Prozess des Lebens

Human Frontier Science Program fördert Kooperation zu Photosynthese

16.05.2013 - Deutschland

Die Photosynthese zählt zu den zentralen Prozessen, die Leben ermöglichen, ist aber bisher nur grob verstanden. Mit ultrakurzen Schnappschüssen an modernen Lichtquellen wie BESSY II in Berlin und der Linac Coherent Light Source in Stanford will nun ein deutsch-amerikanisches Team die Zwischenschritte bei der komplexen katalytischen Reaktion beobachten. Dafür hat ihnen das Human Frontier Science Program nun eine Unterstützung von rund 900.000 US-Dollar für die nächsten drei Jahre zugesichert. Zum Team gehören der HZB-Physiker Dr. Philippe Wernet, die Chemikerin Prof.  Dr. Athina Zouni von der Humboldt-Universität zu  Berlin, Dr. Uwe Bergmann vom SLAC National Accelerator Laboratory und Dr. Junko Yano, Lawrence Berkeley National Laboratory, die das Projekt federführend leitet.

Natürlicher Katalysator unter der Lupe

Obwohl alle tierischen Organismen Sauerstoff verbrauchen, geht uns der Sauerstoff glücklicherweise nicht aus. Denn Grünpflanzen, Algen und Cyanobakterien bauen aus CO2 Wasser und Sonnenlicht durch Photosynthese andere Moleküle auf und setzen dabei wieder Sauerstoff frei. Dabei wird die zentrale Reaktion im „Photosystem II“- Protein“, nämlich die Abspaltung von Sauerstoff aus Wasser, erst durch einen Katalysator möglich, ein komplexes Molekül mit einem Kern aus Mn4CaO5.

Wie die Reaktion an diesem natürlichen  Katalysator nun genau abläuft, wollen Forscher am HZB zusammen mit Kollegen der HU Berlin und in den USA untersuchen. Neue Einsichten wären nicht nur grundsätzlich spannend, sondern könnten auch dazu beitragen, in Zukunft Solarenergie in Form von so genannten solaren Brennstoffen zu speichern und so eine der großen Herausforderungen der Energiewende zu lösen.

Neuer Ansatz: Reaktionen bei Raumtemperatur beobachten

Zu diesem Zweck hat das Team nun einen neuen Ansatz entwickelt, der weit über die konventionelle Röntgenkristallografie und Röntgenspektroskopie bei tiefen Temperaturen hinausgeht. Denn solange die Untersuchungen bei Temperaturen nahe dem absoluten Nullpunkt stattfinden, sind die Bedingungen keineswegs lebensnah. Auch beschädigt die Röntgenstrahlung die Katalysemoleküle.

Die intensiven und ultrakurzen Femtosekunden-Röntgenpulse an der Linac Coherent Light Source, einem Freien-Elektronenlaser am SLAC National Accelerator Laboratory in Stanford bieten die Möglichkeit, bei Raumtemperatur Daten zu sammeln und dabei das Signal aufzufangen, bevor die Probe zerstört wird. „Wir machen eine Art Schnappschuss von der Reaktion“, erklärt Philippe Wernet.

Die Forscher wollen damit die Protein-Struktur und die Dynamik der Reaktion am Mn4CaO5 –Cluster untersuchen, und zwar während weiter Licht absorbiert wird und Wasser zu Sauerstoff  oxidiert. „Wir planen eine Folge von zeitaufgelösten Röntgenstreu- und Röntgenspektroskopie-Experimenten, um die Reaktion bei Raumtemperatur zu untersuchen und dabei alle Zwischenschritte abzubilden“, erklärt Wernet.  So hoffen sie,  einen sehr genauen Einblick in  die Reaktionen zu erhalten, die für den Prozess der photosynthetischen Wasser-Oxidation nötig sind.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Mikroskopie-Zubehör

Mikroskopie-Zubehör von AHF analysentechnik

Optimieren Sie Ihre Fluoreszenz-Mikroskopie mit Premium-Zubehör

Entdecken Sie optische Filter und LED-Lichtquellen der nächsten Generation

Mikroskopie-Zubehör
Ionendetektoren für Massenspektroskopie

Ionendetektoren für Massenspektroskopie von Hamamatsu Photonics

Innovative Detektorlösungen für die Massenspektrometrie

Einzigartige Geräte für die nächste Generation der Massenspektralanalyse

Ionendetektoren
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Chemie?

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren
Themenwelt anzeigen
Themenwelt Spektroskopie

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren
Themenwelt anzeigen
Themenwelt Synthese

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren