Die Glasfaser, in der das Licht stehenbleibt
Lichtpulse, langsamer als ein Schnellzug
Im freien Raum ist die Lichtgeschwindigkeit immer gleich groß – ungefähr 300 Millionen Meter pro Sekunde. Schickt man Licht durch ein Medium wie Glas oder Wasser, wird es durch seine Wechselwirkung mit dem Medium allerdings ein bisschen abgebremst. „Bei unserem System ist dieser Effekt extrem, weil wir gezielt eine äußerst starke Wechselwirkung zwischen Licht und Materie erzeugen“, sagt Prof. Arno Rauschenbeutel (Atominstitut der TU Wien / Vienna Center for Quantum Science and Technology). „Die Geschwindigkeit des Lichts in unserer atombesetzten Glasfaser beträgt bloß 180 km/h – der Railjet der Österreichischen Bundesbahn ist schneller.“
Quantenkommunikation im bestehenden Glasfaser-Netz
„Es gibt heute verschiedene Ansätze, Information quantenphysikalisch zu übertragen“, sagt Dr. Clément Sayrin (ebenfalls TU Wien). „Glasfasern sind eine technologisch besonders interessante Variante – schließlich gibt es bereits ein weltweites Glasfasernetz, über das wir täglich Daten austauschen.“
An der TU Wien wurden Cäsium-Atome an eine ultradünne Glasfaser gekoppelt. Wenn das Atom das Licht eines Lasers absorbiert, kann es von einem Zustand niedriger Energie in einen Zustand höherer Energie übergehen – vorausgesetzt, die Energie des absorbierten Photons entspricht der Energiedifferenz zwischen den beiden Zuständen. Das Problem ist dabei allerdings, dass auf diese Weise „gespeichertes“ Licht nicht kontrolliert wieder abgerufen werden kann.
Im Experiment wurde deswegen zusätzlich noch ein Kontroll-Laser verwendet, der den Zustand höherer Energie an einen dritten Atomzustand koppelt. „Durch das Zusammenspiel dieser drei Zustände kann man erreichen, dass ein Photon nicht mehr wie sonst einfach absorbiert und dann später zufällig wieder ausgesandt wird. Stattdessen wird die Information des Photons kontrolliert auf ein Ensemble von Atomen übertragen und für definierte Zeit festgehalten.“ Aus dem Lichtteilchen wird so eine kollektive Anregung von Atomen.
Nach zwei Mikrosekunden, einer Zeitspanne in der das Licht sonst bereits ungefähr einen halben Kilometer zurückgelegt hätte, wurden im Experiment die Atome mit Hilfe des Kontroll-Lasers dazu gebracht, das gespeicherte Licht wieder zurück in die Glasfaser zu senden. Die Eigenschaften der Photonen bleiben bei diesem Verfahren erhalten – eine wichtige Voraussetzung für die Quantenkommunikation.
Information von Lichtteilchen zu speichern ist ein wichtiger technologischer Schritt auf dem Weg zur Quanten-Kommunikation über große Distanzen. „Quantenphysikalisch kann man eine Verbindung zwischen Sender und Empfänger herstellen, die von außen nicht abgehört werden kann“, erklärt Arno Rauschenbeutel. „Die grundlegenden Gesetze der Quantenphysik verhindern, dass irgendjemand in diese Verbindung eingreift, ohne dass die beiden beteiligten Personen das bemerken.“
Originalveröffentlichung
C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel; "Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms."; Optica.
Meistgelesene News
Originalveröffentlichung
C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel; "Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms."; Optica.
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.