Nano: nicht nur kleiner, sondern ganz anders
Technische Universität Kaiserslautern
Fluorierte Verbindungen kommen in der Membranproteinforschung typischerweise dann zum Einsatz, wenn Wissenschaftler auf Materialien und Nanopartikel angewiesen sind, die gegenüber ihrer Umgebung „inert“ sind, also nicht mit anderen Verbindungen reagieren. Fluorkohlenstoffe erfüllen diese Bedingung in idealer Weise, und zwar sowohl bezüglich der zu untersuchenden Membranproteine, die wegen ihrer ölartigen chemischen Zusammensetzung wasserabweisend sind, als auch gegenüber wässrigen Lösungen, die üblicherweise im Labor zum Einsatz kommen. Allerdings gibt es in jüngster Zeit vermehrt Interesse an Anwendungen, bei denen eine milde, gut kontrollierbare Wechselwirkung fluorierter Nanopartikel mit Membranproteinen einer absoluten Inertheit vorzuziehen wäre. Dies ist zum Beispiel dann der Fall, wenn ein Membranprotein nach seiner Herstellung in einer Bakterienkultur mithilfe einer synthetischen chemischen Verbindung in seine korrekte Form zurückgebracht werden soll, damit es seine natürliche Funktion ausüben kann.
Mit Unterstützung durch Kollegen aus dem Fachbereich Chemie sowie der Universitäten Halle und Avignon (Frankreich) haben Biophysiker der Technischen Universität Kaiserslautern nun gezeigt, dass genau dies möglich wird, wenn Fluorkohlenstoffe mit anderen chemischen Verbindungen so kombiniert werden, dass die daraus hervorgehenden Moleküle sich von alleine zu nanometerkleinen Strukturen - sogenannten Mizellen - zusammenlagern. Im Gegensatz zu makroskopischen, also auf unserer alltäglichen Größenskala abbildbaren Objekten wie den obengenannten Teflonpfannen verfügen diese winzigen Strukturen über die Fähigkeit, ganz gezielt Kontakte mit wasserabweisenden Verbindungen herzustellen. Wie das internationale Wissenschaftlerteam kürzlich in der Fachzeitschrift Angewandte Chemie berichtet hat, kann man sich diese besondere Eigenschaft zunutze machen, um empfindliche Membranproteine kontrolliert und ohne den Einsatz konventioneller, aggressiverer Hilfsmittel in einer biologisch aktiven Form in Lösung zu halten und sie so im Labor zu untersuchen.
Originalveröffentlichung
E. Frotscher, B. Danielczak, C. Vargas, A. Meister, G. Durand, S. Keller. Angew. Chem. 2015, 127, 5158–5162
Meistgelesene News
Originalveröffentlichung
E. Frotscher, B. Danielczak, C. Vargas, A. Meister, G. Durand, S. Keller. Angew. Chem. 2015, 127, 5158–5162
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
NANOPHOX CS von Sympatec
Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren
Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung
DynaPro Plate Reader III von Wyatt Technology
Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung
Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle
Eclipse von Wyatt Technology
FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln
Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.