Magnetismus für den Spin nutzen
Erforschung der Geheimnisse von Skyrmionen
Ames Laboratory, US Department of Energy
Skyrmionen sind nanoskalige Wirbel oder Wirbel von Magnetpolen, die Gitter innerhalb eines magnetischen Materials bilden, eine Art von Quasipartikel, die über das Material reißen können, durch elektrischen Strom gedrückt. Diese Eigenschaften haben die Faszination der Wissenschaftler eingefangen, die glauben, dass das Phänomen zu einem weiteren großen Fortschritt in der Datenspeicherung führen könnte, der die digitale Technologie noch schneller und kleiner macht.
Es gibt jedoch einige große Herausforderungen zu bewältigen. Bis vor kurzem waren Skyrmionen ein Phänomen, das nur bei extrem niedrigen Temperaturen beobachtet wurde. Außerdem machen äußere Magnetkräfte sie derzeit für Anwendungen unpraktikabel.
"Um in einem Gerät wirklich nützlich zu sein, müssen diese magnetischen Wirbel ohne die "Hilfe" eines externen Magnetfeldes existieren können", sagt Lin Zhou, Wissenschaftler in der Abteilung für Materialwissenschaften und Technik des Ames-Labors.
In diesem Sinne untersuchten sie und andere Forscher des Ames Laboratory FeGe, ein Eisen-Germanium-Magnetmaterial, das in Kristallen mit ähnlicher oder B20-Struktur Skyrmionen in den bisher höchsten Temperaturbereichen nachgewiesen hat.
Ames Lab Wissenschaftler mit externen Mitarbeitern konnten durch Magnetfeld-Exposition und Unterkühlung mit flüssigem Stickstoff ein Skyrmiongitter in einer Probe aufbauen. Mit einer hochauflösenden Mikroskopiemethode namens Lorentz Transmissionselektronenmikroskopie (L-TEM) konnte das Team das Skyrmiongitter im Nullmagnetfeld beobachten und dann den Zerfall der Skyrmionen bei Erwärmung der Temperatur beobachten. Diese direkte Beobachtung ergab kritische neue Informationen darüber, wie sich Skyrmionen verhalten und wie sie in einen "normalen" (was Wissenschaftler als metastabil bezeichnen) magnetischen Zustand zurückkehren.
"Wir haben diese Skyrmionen ohne Magnetfeld stabilisiert, und unsere Mikroskopietechniken haben es uns ermöglicht, wirklich zu sehen, wie sich die Wirbel im Laufe der Zeit, der Temperatur und des Magnetfeldes verändern; wir denken, dass es eine sehr solide Grundlage für Theoretiker bietet, dieses Phänomen besser zu verstehen", sagte Zhou.
Originalveröffentlichung
Licong Peng, Ying Zhang, Liqin Ke, Tae-Hoon Kim, Qiang Zheng, Jiaqiang Yan, X.-G. Zhang, Yang Gao, Shouguo Wang, Jianwang Cai, Baogen Shen, Robert J. McQueeney, Adam Kaminski, Matthew J. Kramer, and Lin Zhou; "Relaxation Dynamics of Zero-Field Skyrmions over a Wide Temperature Range"; Nano Letters; 2018
Meistgelesene News
Originalveröffentlichung
Licong Peng, Ying Zhang, Liqin Ke, Tae-Hoon Kim, Qiang Zheng, Jiaqiang Yan, X.-G. Zhang, Yang Gao, Shouguo Wang, Jianwang Cai, Baogen Shen, Robert J. McQueeney, Adam Kaminski, Matthew J. Kramer, and Lin Zhou; "Relaxation Dynamics of Zero-Field Skyrmions over a Wide Temperature Range"; Nano Letters; 2018
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.