Spinströme aus Abwärme: Forscherteam legt neue Erkenntnisse über magnetische Spinwellen vor

Grundlagen der Umwandlung von Wärmeströmen in magnonische Spinströme verstanden

11.02.2016 - Deutschland

Einem internationalen Forscherteam ist es gelungen, neue Erkenntnisse über magnetische Spinwellen zu erhalten. Die Spinwellen können in elektrisch nichtleitenden Materialien durch ein Temperaturgefälle entstehen und dann in einer benachbarten metallischen Schicht in elektrische Ströme umgewandelt werden. Aus Wärme kann somit elektrische Energie entstehen. Das Prinzip, das erst vor kurzer Zeit entschlüsselt wurde, bietet für die Zukunft neue Möglichkeiten, Abwärme rückzugewinnen und damit Prozesse energieeffizienter und umweltfreundlicher zu gestalten. An dem gemeinsamen Forschungsprojekt sind Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU), des Walther-Meißner-Instituts (WMI) in Garching, der Tohoku University, Japan, und der Delft University of Technology, Niederlande, beteiligt.

© Andreas Kehlberger, JGU

Durch die thermische Anregung der drei magnetisch gekoppelten Untergitter, bestehend aus zwei Eisen-Gitter (Fe) und einem Gadolinium-Gitter (Gd), kommt es zur Emission einer magnetischen Gitterschwingung, eines Magnons.

Magnetische Spinwellen, auch Magnonen genannt, sind elementare magnetische Anregungen, durch die der Drehimpuls und Energie und damit Informationen innerhalb von magnetischen Festkörpern transportiert werden können. Weil die Existenz der magnetischen Wellen an den Festkörper gekoppelten ist, lassen sich diese jedoch nur schwer nachweisen. In dem gemeinsamen Projekt konnten die Forscher zeigen, dass auch in komplexen, aus mehreren magnetischen Atomsorten aufgebauten Materialien Magnonen durch Wärmetransport angeregt werden. Grundlage für den Nachweis bildet der Spin-Seebeck-Effekt, dessen Ursprung ebenfalls erst vor Kurzem verstanden wurde. Die neuen Ergebnisse zeigen außerdem, dass es durch den Spin-Seebeck-Effekt möglich ist, fundamentale Eigenschaften des Systems auf einfache Weise zu erfassen und das komplexe Wechselspiel der einzelnen magnetischen Unterstrukturen zu bestimmen.

Der Spin-Seebeck-Effekt stellt einen sogenannten Spin-thermoelektrischen Effekt dar, der es möglich macht, sogar in elektrisch nichtleitenden Materialien thermische Energie in elektrische Energie umzuwandeln. Im Gegensatz zu konventionellen thermoelektrischen Effekten kann damit in magnetischen Isolatoren, die mit einer dünnen Metallschicht kombiniert werden, Wärmeenergie rückgewonnen werden. Forschern der JGU war es vor kurzer Zeit gelungen, den Ursprung des Effekts auf die thermisch angeregten magnetischen Wellen in Festkörpern, also die Magnonen, zurückzuführen.

Basierend auf dieser Erkenntnis haben die beteiligten Wissenschaftler nun neue Untersuchungen an komplexeren magnetischen Materialien, sogenannten kompensierten Ferrimagneten, durchgeführt. Temperaturabhängige Untersuchungen dieser Materialien mittels des Spin-Seebeck-Effekts offenbarten ein einzigartiges und somit charakteristisches Signalverhalten, das neue Erkenntnisse über die dem Effekt zugrundeliegenden Magnonen und deren Verteilung liefert.

„Als ich zum ersten Mal unsere komplexen Messdaten gesehen habe, hätte ich nicht für möglich gehalten, wie viele Informationen wir über das umfassende Wechselspiel innerhalb des Materials gewinnen können. All dies war nur durch die gute Zusammenarbeit mit unseren nationalen und internationalen Kollegen möglich“, betont Andreas Kehlberger, Mitarbeiter in der Forschergruppe von Univ.-Prof. Dr. Mathias Kläui, der kürzlich seine Promotion als Stipendiat der Exzellenz-Graduiertenschule „Materials Science in Mainz" (MAINZ) an der JGU abgeschlossen hat.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...