Bahnbrechende Entdeckung des ersten kunststoffabbauenden Bakteriums
mauriceangres; pixabay.com; CC0
Jährlich werden über 300 Millionen Tonnen Kunststoff weltweit produziert, darunter etwa 50 Millionen Tonnen Polyethylenterephthalat, besser bekannt unter der Abkürzung PET. Hergestellt wird PET aus Erdöl. Diese Kunststoffart wird vor allem für Getränkeflaschen verwendet. Nur ein geringer Anteil davon wird später tatsächlich recycelt. Besonders problematisch ist die sehr lange Haltbarkeit von Kunststoffmaterialien, die bislang bis auf wenige Spezialkunststoffe nicht biologisch abbaubar sind. Das führt auf Mülldeponien, aber vor allem in den Weltmeeren, zu einer erheblichen Umweltbelastung. Es bildet sich (durch mechanische Zerstörung) über die Jahre Mikroplastik, was wiederum sehr negative Auswirkungen auf verschiedenste Lebewesen hat.
Das japanische Forscherteam aus Kyoto, Yokohama und Yamaguchi hat nun in Proben aus einer Recyclingstation für PET-Flaschen ein bislang einzigartiges Bakterium (Ideonella sakaiensis) in einem Konsortium mehrerer Mikroorganismen identifiziert, das in der Lage ist, PET-Kunststoff zu „knacken“. In umfangreichen Experimenten konnten sie zeigen, dass Ideonella sakaiensis sich an PET-Oberflächen anheften kann und zunächst ein hochspezifisches Enzym (PETase) ausschleust, das die chemischen Bindungen im Kunststoff aufbricht. Die Abbauprodukte werden dann vom Mikroorganismus aufgenommen und von einem zweiten selektiven Enzym (MHETase) in der Zelle in die Monomere Ethylenglykol und Terephthalsäure gespalten. Diese Grundbaustoffe von PET können nun von Ideonella sakaiensis komplett verstoffwechselt werden und dienen folglich als alleinige Wachstumsquelle des Mikroorganismus.
„Die Entdeckung dieses besonderen Bakteriums ist aus mehreren Gründen bahnbrechend“, sagt Uwe Bornscheuer. „Bislang waren nur ganz wenige Enzyme bekannt, die überhaupt und auch nur eine sehr geringe Aktivität im Abbau von PET zeigen. Besonders wichtig für ein Aufbrechen des Polymers ist vor allem die Zugänglichkeit der 'glatten' Kunststoffoberfläche. Hier scheint der Ideonella sakaiensis-Stamm besondere Mechanismen entwickelt zu haben, die das japanische Forscherteam aber noch nicht im Detail aufklären konnte.“ Prinzipiell könnte nun dieser Mikroorganismus genutzt werden, um den Kunststoff PET umweltfreundlich zu verwerten. Gleichzeitig wäre es aber nun bei Kenntnis der beteiligten Enzyme grundsätzlich möglich, Verfahren zu entwickeln, um das Monomer Terephthalsäure zu isolieren und für die Synthese von PET wieder einzusetzen. „Dies würde ohne Zweifel eine erhebliche Umweltentlastung darstellen, da auf den Einsatz von Erdöl zur Herstellung dieses Kunststoffes verzichtet werden könnte“, schließt Professor Bornscheuer seine Einschätzungen ab.
Für die Grundlagenforschung wäre es sehr interessant herauszufinden, wie die beiden hochspezifischen Enzyme PETase und MHETase durch natürliche Evolution entstanden sind, da der Kunststoff PET erst seit ca. 70 Jahren in der Umwelt vorkommt. Folglich stand nur ein recht kurzer Zeitrahmen zur Anpassung des Bakteriums an dieses neue 'Substrat' zur Verfügung und offensichtlich ist diese Entdeckung der japanischen Arbeitsgruppe ein Beispiel für eine sehr rasante Evolution eines Mikroorganismus.
Originalveröffentlichung
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.