Keine Chance für Schmierfilme

Erlanger Verfahrenstechniker entwickeln Lotuseffekt für organische Flüssigkeiten

21.04.2016 - Deutschland

Materialwissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben ein Verfahren entwickelt, das den Selbstreinigungseffekt keramischer Oberflächen auch bei organischen Flüssigkeiten wie Ölen oder Alkohol ermöglicht.

uroburos, pixabay.com, CC0

Lotuseffekt: Flüssigkeiten perlen von Oberflächen ab, ohne sie zu benetzen.

Jeder hat schon einmal vom Lotuseffekt gehört: Flüssigkeiten perlen von Oberflächen ab, ohne sie zu benetzen. Die namensgebende Lotosblume und andere hydrophobe Pflanzen bilden eine Struktur mikroskopisch kleiner Papillen aus, die die Kontaktfläche stark verringert und Flüssigkeiten in Kugelform zwingt. Seit etwa zwanzig Jahren wird dieser Selbstreinigungseffekt technisch nachgebildet und kommt beispielsweise bei Fliesen, Glasoberflächen oder Fassadenanstrichen zum Einsatz.

„Leider funktioniert dieser Effekt nur bei Wasser besonders gut, weil Wasser eine sehr hohe Oberflächenspannung und damit die Tendenz zur Tropfenbildung besitzt“, sagt Prof. Dr. Nicolas Vogel vom Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik der FAU. „Bei anderen Flüssigkeiten, vor allem organischen Ölen oder Alkohol, ist dieses Verhalten weniger stark ausgeprägt.“ Seit Jahren forscht Vogel deshalb an einer Möglichkeit, keramische Oberflächen so zu manipulieren, dass das Benetzungsverhalten auch von Flüssigkeiten mit geringerer Oberflächenspannung kontrolliert werden kann.

Höhlenartige Poren im Glas

Diesem Ziel sind die Verfahrenstechniker der FAU nun einen Schritt näher gekommen: Vogel und seinen Forscherkollegen ist es gelungen, kleinste polymere Nanopartikel mit einem Durchmesser unterhalb von 1 µm in die Oberfläche von Glas einzubinden – und dabei die Höhe der Einbettung zu kontrollieren. In einem nachfolgenden Schritt werden die kleinen Partikel durch Kalzinieren wieder entfernt. Im Trägermaterial entstehen so kleine höhlenartige Vertiefungen mit einem Öffnungswinkel von weniger als 90 Grad. „Entscheidend bei diesem Verfahren ist, dass wir die Eindringtiefe der Kolloide und damit den Öffnungswinkel der Poren sehr präzise steuern können“, erklärt Vogel.

Anwendung in der Hygiene

Damit haben die Erlanger Forscher die Grundlage für Materialien geschaffen, die nicht nur Wasser, sondern auch organische Flüssigkeiten abweisen. Ein solcher Selbstreinigungsmechanismus könnte beispielsweise in der Medizinhygiene zum Einsatz kommen, wenn es darum geht, eine Benetzung mit Körperflüssigkeiten zu verhindern. Oder bei Glasoberflächen – Vitrinen, Türen, Kameralinsen –, die vor Ölen und Fetten geschützt werden sollen. „Noch funktioniert unser Verfahren nur unter Laborbedingungen“, sagt Nicolas Vogel. „Aber die Methode ist prinzipiell skalierbar, so dass auch eine industrielle Anwendung erreicht werden kann.“

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

NANOPHOX CS

NANOPHOX CS von Sympatec

Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren

Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

Partikelanalysatoren
DynaPro Plate Reader III

DynaPro Plate Reader III von Wyatt Technology

Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung

Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle

Partikelanalysatoren
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller