Leistung von mikrobiellen Brennstoffzellen erheblich steigern
Lebende Bakterien mit leitfähigen Polymer beschichtet
© Wiley-VCH
Die Geschichte der mikrobiellen Brennstoffzelle reicht bis Anfang des 20. Jahrhunderts zurück. Damals verbanden Wissenschaftler zum ersten Mal Bakterienzellen mit Elektroden und erhielten Strom. Dies funktioniert, weil der Stoffwechsel der Bakterien – wenn kein Sauerstoff zugegen ist – in einen Modus wechselt, in dem er die chemische Energie anstelle in die Produktion von Kohlendioxid und Wasser in die von Protonen und Elektronen steckt. Diese Elektronen kann man in einer elektrochemischen Zelle zur Stromgewinnung verwenden. Solche mikrobiellen Brennstoffzellen werden derzeit im Bereich nachhaltiger Energieproduktion und insbesondere bei der Wasseraufbereitung intensiv erforscht. Ihr Schwachpunkt ist die Energiedichte. Ein großer Teil des elektrochemischen Potenzials der Bakterien liegt brach, weil die Bakterienzellen ihre produzierten Elektronen nicht and die Elektrode weiterleiten können. Um die Bakterien leitfähig zu machen, erforschen Qichun Zhang von der Nanyang Technological University in Singapur und seine Kollegen die Möglichkeit, diese in eine Hülle von leitfähigen Polymeren einzuschließen. Allerdings müssen die beschichteten Bakterien dabei natürlich lebensfähig bleiben.
Geeignet als Beschichtungsmaterial erschien den Wissenschaftlern das Polymer Polypyrrol. "Wir nahmen an, dass durch die Modifikation der Bakterienzellen mit Polypyrrol die elektrische Leitfähigkeit der Bakterienzellen steigen müsste, ohne dass die Vitalität leidet", erklärten die Autoren. Als "oxidativen Starter, um Pyrrol-Monomere auf der (Bakterien-)Oberfläche zu polymerisieren", verwendeten sie Eisenionen. Für die Versuche wählten sie das Proteobakterium Shewanella oneidensis, das Metalle gut toleriert und sowohl aerob als auch anaerob leben kann. Nach der Beschichtung waren die Bakterien tatsächlich weiter lebendig und aktiv, sodass sie mit einer Kohlenstoffanode auf die Entwicklung von Biostrom hin getestet werden konnten. Dabei stieg die Leitfähigkeit um das 23-fache, die Stromerzeugung wuchs um das Fünffache, und die maximale Energiedichte der Anode war 14-mal höher als bei der unbeschichteten Variante. Bei Fütterung mit Laktat als Nährstoff beobachteten die Autoren einen beträchtlichen Strom, im Gegensatz zu den unbeschichteten Bakterien, die gar keinen Strom lieferten.
Mit dieser Strategie der Gruppe um Zhang könnte man das Leitfähigkeitsproblem von mikrobiellen Anoden auf bemerkenswerte Weise lösen. Die Beschichtung von lebenden Bakterien könnte, so die Autoren der Studie, der Erforschung von mikrobiellen Brennstoffzellen eine neue Dimension verleihen, ganz zu schweigen von der grundlegenden Forschung, wie man Zelloberflächen modifizieren kann.
Originalveröffentlichung
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Multi-Liter Hydrogen Gasgenerator von VICI
Labor-Wasserstoffversorgung neu definiert
Bis zu 18 l/min Wasserstoff mit 99,99997% Reinheit und intuitiver Touchscreen-Steuerung
CATLAB Catalysis and Thermal Analysis von Hiden Analytical
Ein System zur Katalysatorcharakterisierung, kinetischen und thermodynamischen Messungen
Integriertes Mikroreaktor-Massenspektrometer für Reaktionstests, TPD/TPR/TPO und Pulschemisorption.
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.