Neues Verfahren zur Herstellung von leistungsfähigen Katalysatorsystemen für die Methanolsynthese
Methanol wird industriell zumeist aus Synthesegas, einem Gemisch aus Kohlendioxid, Kohlenmonoxid und Wasserstoff durch Umsetzung an Kupfer/Zinkoxid-Katalystoren hergestellt. Für deren katalytische Wirksamkeit spielen offenbar Wechselwirkungen zwischen dem metallischen Kupfer und dem Zinkoxid, das als Träger fungiert, eine entscheidende Rolle. Das Team um Roland A. Fischer suchte daher einen Weg, um den Grenzflächenkontakt zwischen Kupfer und Zinkoxid zu maximieren. So kamen sie auf die Idee, poröse Silikat-Materialien als Trägersubstanz für ihre Katalysatorsysteme einzusetzen. Diese haben den Vorteil einer sehr hohen spezifischen Oberfläche sowie einer präzise einstellbaren nanoskopischen Porenstruktur - und haben sich bereits vielfach als ausgezeichnete Trägermaterialien bewährt. Statt die katalytisch aktiven Substanzen - Kupfer und Zinkoxid - nun mit konventionellen Imprägnierverfahren auf den Träger aufzubringen, setzen die Bochumer Forscher auf die so genannte metallorganische Dampfabscheidung: Im Vakuum verdampfen sie zunächst eine sauerstoffhaltige kupferorganische Verbindung. Dabei wird der Dampf am Silikat-Träger fest adsorbiert. Anschließend wird Diethylzink auf die gleiche Weise aufgedampft und das Material vorsichtig erhitzt. Auf der molekularen Ebene passiert dabei Folgendes: Die Zinkatome nehmen den Platz der Kupferatome ein, die sich ihrerseits als metallisches Kupfer abscheiden. Beim Erhitzen werden alle organischen Verbindungen verbrannt, das Zink bleibt in Form von Zinkoxid übrig. Das Besondere: Sowohl Kupfer als auch Zinkoxid liegen extrem fein verteilt vor, so dass sie besonders innig miteinander in Kontakt treten können. So erhielten die Forscher mit allen getesteten Silikaten Katalysatormaterialien, die den klassischen Kupfer/Zinkoxid-Katalysatoren mindestens ebenbürtig sind. "Die katalytische Aktivität einer der Proben übertrifft die der Klassiker sogar überraschend deutlich," so Fischer. "Grund ist die spezielle dreidimensionale Porenstruktur dieses Silikat-Trägers, die eine besonders effiziente Diffusion der eingedrungenen Dämpfe erlaubt."
Meistgelesene News
Themen
Organisationen
Weitere News aus dem Ressort Forschung & Entwicklung
Diese Produkte könnten Sie interessieren
Multi-Liter Hydrogen Gasgenerator von VICI
Labor-Wasserstoffversorgung neu definiert
Bis zu 18 l/min Wasserstoff mit 99,99997% Reinheit und intuitiver Touchscreen-Steuerung
CATLAB Catalysis and Thermal Analysis von Hiden Analytical
Ein System zur Katalysatorcharakterisierung, kinetischen und thermodynamischen Messungen
Integriertes Mikroreaktor-Massenspektrometer für Reaktionstests, TPD/TPR/TPO und Pulschemisorption.
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.