Kristallklarer Durchblick bei der Kalkbildung
Kalk kristallisiert anders als bislang gedacht - das ermöglicht die Entwicklung neuartiger Entkalker und hat auch Folgen für den Klimawandel
MPI für Kolloid- und Grenzflächenforschung/Denis Gebauer
Kalziumkarbonat ist überall: Als Kreide hat es wohl jeder schon in der Hand gehabt oder als Ablagerung in der Waschmaschine verflucht. Marmor, Dolomit und viele Sedimente bestehen hauptsächlich daraus, und auch im Panzer von Krebsen, in Muschelschalen, Schneckenhäusern, Seeigeln sowie in Einzellern kommt Kalziumkarbonat vor. Diese Biomineralien besitzen Eigenschaften, die sie auch für technische Anwendungen unter anderem in der Medizin oder der Baustofftechnik interessant machen. So sind sie etwa besonders bruchfest, weil ihre Kristalle auf nanoskopischer Ebene ausgeklügelt strukturiert sind. Wie Lebewesen solche Strukturen produzieren, möchten Materialwissenschaftler gerne verstehen, um sie nachzuahmen.
Dazu haben die Forscher des Max-Planck-Instituts in Golm bei Potsdam nun einen Beitrag geleistet. Demnach entstehen Kalziumkarbonatkristalle anders als bislang gedacht: Sobald Kalzium- und Karbonat-Ionen in einer Lösung aufeinandertreffen, bilden sie stabile Nanocluster aus rund 70 Kalzium- und Karbonat-Ionen - und zwar auch in sehr weichem Wasser, einer verdünnten Lösung also, aus der sich normalerweise kein Kalk abscheidet. Steigt die Konzentration des gelösten Kalziumkarbonats, schließen sich die Cluster zusammen, und das Mineral kristallisiert.
Ordnung im frühen Stadium
"In welcher seiner drei wasserfreien Kristallstrukturen Kalziumkarbonat kristallisiert, entscheidet sich anscheinend bereits, wenn sich die Cluster bilden", sagt Helmut Cölfen, der die Arbeiten leitete: "Wir haben zudem beobachtet, dass die Kristallstruktur vom pH-Wert abhängt." Der pH-Wert gibt an, wie sauer oder basisch eine Lösung ist. Unter schwächer basischen Bedingungen bildet Kalziumkarbonat demnach Kalcit, seine stabilste kristalline Struktur. In stärker basischem Milieu entsteht dagegen Vaterit, eine nicht stabile kristalline Struktur.
"Unsere Ergebnisse legen nahe, dass der pH-Wert bereits beeinflusst, wie sich die Ionen in den gerade mal zwei Nanometer großen Clustern aneinanderlagern", erklärt Denis Gebauer, der an den Arbeiten maßgeblich beteiligt war. In diesem Stadium bilden sie zwar noch keine regelmäßige Kristallstrukturen, aber höchstwahrscheinlich ist die Ordnung des Kristalls dann bereits ansatzweise zu erkennen. Wenn die Cluster sich dann zu immer größeren Aggregaten zusammenlagern, kann diese Ordnung erhalten bleiben. So bildet sich zunächst eine amorphe Übergangsform, das heißt ein nicht-kristalliner Feststoff, der sich in einen Kristall umwandelt.
Lebewesen können besser eingreifen
Läuft die Kristallisation tatsächlich so ab, wäre leichter nachzuvollziehen, wie etwa die Muschel ihre Schale baut oder ein Seeigel seine Stacheln formt. Da schon die winzigen Cluster, mit denen die Kristallisation startet, stabil sind, bräuchten Lebewesen nur in diesem frühen Stadium einzugreifen, um die Struktur zu beeinflussen. Dazu könnten sie etwa den pH-Wert oder Biomoleküle nutzen.
Die bislang geltende Theorie der Kristallisation lässt dagegen kaum Spielraum in einem frühen Stadium zu beeinflussen, wie sich die Ionen in dem regelmäßigen Kristallgitter anordnen. Sie geht davon aus, dass sich die Ionen erst oberhalb einer bestimmten Konzentration zu Clustern zusammenballen. Erreichen diese Cluster nicht eine Mindestgröße, zerfallen sie wieder. Erst wenn sie die Größe des sogenannten kritischen Kristallkeims überschreiten, kann dieser Keim zu einem Kristall wachsen. Die Kristallstruktur ließe sich damit frühestens im kritischen Keim beeinflussen.
Ob auch andere Mineralien nach diesem Muster kristallisieren, haben die Forscher an Kalziumphosphat und Kalziumoxalat geprüft. Ersteres ist der Hauptbestandteil von Knochen und Zähnen, aus letzterem bestehen Nierensteine. Mit den Mineralien machten die Wissenschaftler denselben Test, wie auch mit Kalziumkarbonat. Tropfenweise fügten sie eine Lösung, die Kalzium-Ionen enthielt, zu einer Lösung mit dem jeweils anderen Bestandteil, also Karbonat-, Phosphat- oder Oxalat-Ionen. Mithilfe einer speziellen Elektrode haben sie dabei gemessen, wie viele der zugegebenen Kalzium-Ionen sich in der Lösung befinden. Tatsächlich standen auch in den Experimenten mit Kalziumphosphat und -oxalat viel weniger Ionen zur Verfügung als die Forscher zugetropft hatten - sie müssen daher wie beim Kalziumkarbonat in Clustern gebunden sein.
Konsequenzen für Technik und Klimawandel
Der neu vorgeschlagene Mechanismus der Kristallisation hat auch technische Konsequenzen: "Die stabilen Cluster bieten einen neuen Angriffspunkt, um Kalkablagerungen in Wasch- und Spülmaschinen, aber auch in der Industrie zu verhindern", sagt Helmut Cölfen. Dieses Problem verursacht in den Industrieländern jährlich Schäden von rund 50 Milliarden Dollar. Herkömmliche Entkalker fischen zum einen Kalzium-Ionen aus dem Wasser, zum anderen binden sie die ausgefällten, winzigen Kristalle und verhindern deren Wachstum. "Nun können neuartige Entkalker entwickelt werden, die verhindern, dass sich die Nanocluster zu größeren Strukturen zusammenfinden", sagt Cölfen: "Dieser Ansatz ist effektiver als die herkömmlichen."
Und auch für den Klimawandel haben die Erkenntnisse Folgen: Die Cluster binden Kohlendioxid als Karbonat. Bislang war nur bekannt, dass festes Kalziumkarbonat das Treibhausgas speichert. Da sich die nanoskopischen Cluster auch in den Weltmeeren bilden, halten sie dort mehr Kohlendioxid aus der Atmosphäre zurück als bislang für das feste Kalziumkarbonat angenommen. Das Problem ist allerdings: Die Ozeane versauern, weil sich ein erheblicher Teil des Kohlendioxids aus der Atmosphäre als Kohlensäure im Ozean löst. "Wenn dann der pH-Wert absinkt, kann weniger Karbonat in Clustern gebunden werden", sagt Helmut Cölfen. So kann schließlich weiteres Kohlendioxid freigesetzt werden, das wiederum in die Atmosphäre entweicht und die globale Heizung weiter aufdreht.
Originalveröffentlichung: Denis Gebauer, Antje Völkel, Helmut Cölfen; "Stable Prenucleation Calcium Carbonate Clusters"; Science, 19. Dezember 2008