Wasserspalter mit Doppelrolle

Mit Sonnenlicht und einem altbekannten Kunststoff lässt sich aus Wasser Wasserstoff produzieren

22.01.2009 - Deutschland

Wasserstoff wird als der Energieträger der Zukunft angesehen. In einem Kilogramm Wasserstoff steckt etwa dreimal soviel Energie wie in einem Kilogramm Erdöl. Zudem entstehen keine Schadstoffe, sondern ausschließlich Wasser, wenn man beispielsweise in Brennstoffzellen Energie aus ihm gewinnt. Wasserstoff kommt auf der Erde jedoch nur in Form von Verbindungen, wie eben Wasser, vor. Um mit ihm Energie zu erzeugen, braucht man Wasserstoff in seiner reinen Form - und zwar bestenfalls mit regenerativen Energiequellen wie etwa Sonnenlicht produziert.

Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Das Kohlenstoffnitrid sorgt dafür, dass sich Wasserstoff bildet, wenn Wasser mit Sonnenlicht bestrahlt wird.

Wissenschaftlern am Max-Planck-Institut für Kolloid- und Grenzflächenforschung ist jetzt ein Schritt in diese Richtung gelungen - und zwar ausgerechnet mit einem der ältesten künstlichen Polymere, das Chemiker kennen. Sie haben ein Kohlenstoffnitrid, das Justus Liebig schon 1834 erstmals herstellte und Melon nannte, genutzt, um Wasserstoff aus Wasser mit Hilfe des Sonnenlichtes zu erzeugen. "Das Besondere an Kohlenstoffnitrid ist, dass es in Wasser selbst bei extrem sauren und basischen Bedingungen stabil ist. Außerdem kann es sehr einfach und kostengünstig hergestellt werden", erklärt Xinchen Wang, dessen Arbeitsgruppe die Experimente in Zusammenarbeit mit der Universität Tokio und der Fuzhou Universität in China vorgenommen hat.

Das Kohlenstoffnitrid nutzt das Sonnenlicht, um Wasserstoff aus dem Wasser herauszulösen. Eine Substanz, die Chemiker als Opferreagenz bezeichnen, nimmt dabei den Sauerstoff des Wassers auf. Der Clou: Die Potsdamer Chemiker können auf Edelmetalle wie etwa Platin verzichten. In herkömmlichen Prozessen sind diese - neben einem Halbleiter als Antenne für das Sonnenlicht - nötig, um die Wasserstoffproduktion zu katalysieren. Das Kohlenstoffnitrid erledigt nun beide Aufgaben zugleich, und das als besonders stabiler organischer Halbleiter, der sich einfacher herstellen lässt als die üblicherweise verwendeten anorganischen Stoffe.

Aus dem Reaktionsgefäß der Potsdamer Forscher sprudelten allerdings pro Stunde nur vier Mikromol Wasserstoff. "Unsere Ausbeute ist damit zwar nicht so hoch wie in den etablierten Verfahren", sagt Xinchen Wang: "Aber wir haben gezeigt, dass sich Wasserstoff prinzipiell nur mit einer einzigen organischen Substanz als Hilfsmittel herstellen lässt." Wenn die Forscher die üblichen Mengen Platin als Katalysator zusetzten, stieg die Ausbeute deutlich - und zwar um das siebenfache. Damit ist zu den existierenden Verfahren jedoch nicht viel gewonnen, da diese mit ähnlichen Mengen von Edelmetallen als Katalysatoren arbeiten. Deshalb versuchen Wang und seine Mitarbeiter nun, die Effizienz des Kohlenstoffnitrids zu steigern, indem sie dessen aktive Oberfläche vergrößern.

"Für technische Anwendungen wäre es optimal, wenn wir Wasser in einem Schritt in Wasserstoff und elementaren Sauerstoff zerlegen könnten", erklärt Wang. Dann kämen die Chemiker ohne Opferreagenz aus, das bislang den Sauerstoff aufnimmt. Das hieße aber, sie müssten den Sauerstoff oxidieren, wie es Pflanzen in der Photosynthese können. Auch das sollte mit Kohlenstoffnitrid als einzigem Hilfsmittel möglich sein, wie Berechnungen der Forscher ergeben haben. In Experimenten brauchen sie dafür bislang aber noch einen zusätzlichen Katalysator.

Nun arbeiten die Wissenschaftler um Wang daran, die Produktion von Wasserstoff und Sauerstoff in einem geeigneten Aufbau zu kombinieren. Gelingt ihnen dies, ist die Wasserspaltung perfekt und Wasserstoff seiner Rolle als wichtiger Energieträger der Zukunft ein Stück näher.

Originalveröffentlichung: Xinchen Wang et al.; "A metal-free, polymeric photocatalyst for hydrogen production from water under visible light"; Nature Materials, 2009, 8, 76-80

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

HYPERION II

HYPERION II von Bruker

FT-IR und IR-Laser-Imaging (QCL) Mikroskop für Forschung und Entwicklung

Untersuchen Sie makroskopische Proben mit mikroskopischer Auflösung (5 µm) in sekundenschnelle

FT-IR-Mikroskope
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren
Themenwelt anzeigen
Themenwelt Synthese

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren