Molekulare Handarbeit
Neue Methode zur Herstellung von maßgeschneiderten organischen Nanostrukturen
Daniel Ebeling
Den Forschern, die im LOEWE-Schwerpunkt PriOSS (Prinzipien oberflächengestützter Synthesestrategien) zusammenarbeiten, ist damit die Antwort auf eine Frage gelungen, die der Physiker Richard Feynman bereits im Jahr 1959 aufwarf und mit der er das Feld der Nanotechnologie begründete: Welche Auswirkungen hätte es, wenn wir neue Materialien Atom für Atom konstruieren könnten? In den frühen 1990er Jahren formulierte der Ingenieur K. Eric Drexler die weitaus kühnere Vision, diese Aufgabe in Zukunft sogar von winzigen Maschinen erledigen zu lassen. Damit wären solche Maschinen in der Lage, nahezu beliebige Nanoarchitekturen – die chemische Stabilität vorausgesetzt – herzustellen und diese mit maßgeschneiderten Eigenschaften auszustatten.
Derartige Vorschläge werden seit Jahrzehnten heftig debattiert. Richard Smalley, Nobelpreisträger für Chemie von 1996, äußerte im Wesentlichen zwei Gegenargumente: Zum einen ließen sich die einzelnen Bausteine (Atome oder Moleküle) mit Hilfe der „Finger“ (bzw. Werkzeuge) solcher Fertigungsmaschinen nicht präzise genug ausrichten, da diese Finger selbst nicht unendlich zu verkleinern wären - sie bestünden schließlich auch aus Atomen. Zum anderen würden sowohl die molekularen Bausteine als auch die Produkte aufgrund von Adhäsionskräften stets an den Fingern haften bleiben. Diese triftigen Argumente gingen als das „fat finger“- und das „sticky finger“-Problem in die Wissenschaftsgeschichte ein.
Mit der neuen Methode werden beide Probleme umgangen: Die inerte, das heißt wenig reaktionsfreudige Salzoberfläche übernimmt die Aufgabe einer „non-sticky hand“, und die scharfe Rastersondenspitze ist der „non-fat finger“. So können die JLU-Wissenschaftler in Zukunft neue organische Nanomaterialen herstellen und systematisch untersuchen, wie sich die Struktur auf deren Eigenschaften auswirkt. Damit soll es möglich werden, die Eigenschaften der Nanoarchitekturen gezielt zu beeinflussen. Dies ist besonders interessant für die Anwendung in elektronischen Bauelementen wie organischen Feldeffekttransistoren (OFET), Leuchtdioden (OLEDs z.B. für Smartphonedisplays) oder Solarzellen. Außerdem können durch die schrittweise herbeigeführten chemischen Reaktionen neue Erkenntnisse über die Reaktionsmechanismen von Molekülen auf Oberflächen erlangt werden.
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
Qigang Zhong, Alexander Ihle, Sebastian Ahles, Hermann A. Wegner, Andre Schirmeisen and Daniel Ebeling; "Constructing covalent organic nanoarchitectures molecule by molecule via scanning probe manipulation"; Nature Chemistry; 2021
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.