Wie Atomkerne schwingen

04.08.2023 - Deutschland
HHU/Soroosh Alighanbari

Schema des Experiments: HD+-Molekülionen (gelb-rote Punktpaare) in einer Ionenfalle (grau) werden durch eine Laserwelle (rot) bestrahlt. Dies bewirkt Quantensprünge, wobei sich der Schwingungszustand der Molekülionen ändert. Dieser Prozess entspricht dem Auftreten einer Spektrallinie. Die Wellenlänge der Laserwelle wird präzise gemessen.

Mithilfe ultrapräziser Laserspektroskopie an einem einfachen Molekül untersuchten Physiker um Prof. Stephan Schiller Ph.D. von der Heinrich-Heine-Universität Düsseldorf (HHU) mit bisher nicht erreichter Präzision die wellenartige Schwingung von Atomkernen. Sie berichten in der Fachzeitschrift Nature Physics, dass sie damit die Wellennatur der Bewegung von Kernmaterie genauer als bisher bestätigen konnten und keine Hinweise für eine Abweichung von dem etablierten Gesetz der Wechselwirkung zwischen Atomkernen fanden.

HHU/Soroosh Alighanbari

Schem. Aufbau eines MHI (hier HD+): Es besteht aus einem Wasserstoff- (p) und einem Deuteriumkern (d), die umeinander rotieren und gegeneinander vibrieren können. Hinzu kommt ein Elektron (e). Die Bewegungen von p und d äußern sich durch Spektrallinien.

Einfache Atome sind seit fast 100 Jahren Gegenstand präziser experimenteller und theoretischer Untersuchungen. Pionierarbeiten wurden bei der Beschreibung und Vermessung des Wasserstoffatoms, des einfachsten Atoms mit nur einem Elektron, geleistet. Heute sind die Energiewerte des Wasserstoffatoms – und damit dessen elektromagnetisches Spektrum – die am genauesten berechneten Eigenschaften eines gebundenen Quantensystems. Da auch sehr genaue Messungen des Spektrums vorgenommen werden können, ermöglicht der Vergleich von theoretischen Vorhersagen und Messungen, die der Vorhersage zugrundeliegende Theorie zu prüfen.

Derartige Überprüfungen sind sehr wichtig. Weltweit suchen Forschende – bisher allerdings vergeblich – nach Hinweisen auf neue physikalische Effekte, die etwa aufgrund der Existenz von Dunkler Materie auftreten könnten. Diese Effekte würden zu einer Diskrepanz zwischen Messung und Vorhersage führen.

Im Gegensatz zum Wasserstoffatom war das einfachste Molekül lange Zeit kein Thema für Präzisionsmessungen. Diesem Forschungsfeld hat sich die Arbeitsgruppe um Prof. Stephan Schiller Ph.D. vom Institut für Experimentalphysik der HHU verschrieben. In Düsseldorf leisteten sie Pionierarbeit und entwickelten experimentelle Techniken, die zu den genauesten weltweit zählen.

Das einfachste Molekül ist das Ion des molekularen Wasserstoffs (sogenanntes MHI): Ein Wasserstoffmolekül, dem ein Elektron fehlt. Es besteht aus drei Teilchen. Eine Variante, das H2+, enthält zwei Protonen und ein Elektron; das HD+ hingegen besteht aus einem Proton, einem Deuteron – einem schwereren Wasserstoffisotop – und einem Elektron. Protonen und Deuteronen gehören zu den geladenen „Baryonen“; dies sind Teilchen, die der sogenannten starken Kraft unterliegen.

In den Molekülen können sich die Bestandteile auf verschiedene Weise gegeneinander bewegen: Die Elektronen schwirren um die Atomkerne, die Atomkerne vibrieren gegeneinander oder rotieren umeinander. Die Teilchen verhalten sich dabei wie Wellen. Im Detail werden diese Wellenbewegungen durch die Quantentheorie beschrieben.

Die unterschiedlichen Bewegungsmodi bestimmen die Spektren der Moleküle, die sich in verschiedenen Spektrallinien widerspiegeln. Die Spektren entstehen ähnlich wie bei Atomen, sie sind aber wesentlich komplexer.

Die Kunst moderner physikalischer Forschung besteht nun darin, die Wellenlängen der Spektrallinien extrem genau zu messen, sowie – mithilfe der Quantentheorie – diese Wellenlängen auch extrem genau zu berechnen. Stimmen die beiden Ergebnisse überein, so wird dies als Nachweis der Korrektheit der Annahmen gedeutet.

Über Jahre verfeinerte das HHU-Physikerteam die Laserspektroskopie der MHI. Entwickelt wurden Techniken, die die experimentelle Auflösung der Spektren um Größenordnungen verbesserten. Ihr Ziel dabei: Je genauer die Spektren vermessen werden können, desto besser können auch die theoretischen Vorhersagen überprüft werden. So können gegebenenfalls Diskrepanzen zur Theorie erkannt und damit Ansatzpunkte gefunden werden, wie die Theorie angepasst werden muss.

Prof. Schillers Team konnte die experimentelle Genauigkeit auf ein Niveau verbessern, das höher liegt als das der theoretischen Vorhersagen. Dazu fangen die Düsseldorfer Physiker eine moderate Menge von etwa 100 MHI in einer Ionenfalle, die sich im Ultrahochvakuum befindet. Mithilfe von Laserkühltechniken werden die Ionen auf eine Temperatur von 1 Milli-Kelvin abgekühlt. Damit wird es möglich, die Molekülspektren von Rotations- und Vibrationsübergängen extrem genau zu vermessen. Nachdem bereits früher Spektrallinien mit Wellenlängen von 230 μm und 5,1 μm untersucht wurden, präsentieren die Autoren nun in Nature Physics Messungen zu einer Spektrallinie mit der deutlich kürzeren Wellenlänge von 1,1 μm.

Prof. Schiller: „Die gemessene Übergangsfrequenz und die theoretische Vorhersage stimmen überein. In Kombination mit früheren Ergebnissen konnten wir so den präzisesten Test für die Quantenbewegung von geladenen Baryonen aufstellen: Sollte es überhaupt eine Abweichung von den Quantengesetzen geben, muss diese kleiner sein als ein Teil in 100 Milliarden.“

Das Ergebnis kann auf eine weitere Art interpretiert werden: Hypothetisch könnte es eine weitere fundamentale Kraft zwischen Proton und Deuteron geben, die zusätzlich zur bekannten Coulomb-Kraft (der Kraft zwischen elektrisch geladenen Körpern) existiert. Erstautor Dr. Soroosh Alighanbari: „Eine solche hypothetische Kraft könnte im Zusammenhang mit der sogenannten Dunklen Materie existieren. Wir haben durch unsere Messungen zwar keine Hinweise auf eine solche Kraft gefunden. Wir werden aber weiter danach suchen."

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

virtual battery day 24

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren
Themenwelt anzeigen
Themenwelt Spektroskopie

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren